On optimal improvements of classical iterative schemes for Z-matrices

Φόρτωση...
Μικρογραφία εικόνας

Ημερομηνία

Συγγραφείς

Noutsos, D.
Tzoumas, M.

Τίτλος Εφημερίδας

Περιοδικό ISSN

Τίτλος τόμου

Εκδότης

Elsevier

Περίληψη

Τύπος

Είδος δημοσίευσης σε συνέδριο

Είδος περιοδικού

peer reviewed

Είδος εκπαιδευτικού υλικού

Όνομα συνεδρίου

Όνομα περιοδικού

Journal of Computational and Applied Mathematics

Όνομα βιβλίου

Σειρά βιβλίου

Έκδοση βιβλίου

Συμπληρωματικός/δευτερεύων τίτλος

Περιγραφή

Many researchers have considered preconditioners, applied to linear systems, whose matrix coefficient is a Z-or an M-matrix, that make the associated Jacobi and Gauss-Seidel methods converge asymptotically faster than the unpreconditioned ones. Such preconditioners are chosen so that they eliminate the off-diagonal elements of the same column or the elements of the first upper diagonal [Milaszewicz, LAA 93 (1987) 161-170], Gunawardena et al. [LAA 154-156 (1991) 123-143]. In this work we generalize the previous preconditioners to obtain optimal methods. "Good" Jacobi and Gauss-Seidel algorithms are given and preconditioners, that eliminate more than one entry per row, are also proposed and analyzed. Moreover, the behavior of the above preconditioners to the Krylov subspace methods is studied. (c) 2005 Elsevier B.V. All rights reserved.

Περιγραφή

Λέξεις-κλειδιά

jacobi and gauss-seidel iterative methods, diagonally dominant z and m-matrices, gauss-seidel method, linear-systems, convergence, jacobi, elimination, operators

Θεματική κατηγορία

Παραπομπή

Σύνδεσμος

<Go to ISI>://000234789100007

Γλώσσα

en

Εκδίδον τμήμα/τομέας

Όνομα επιβλέποντος

Εξεταστική επιτροπή

Γενική Περιγραφή / Σχόλια

Ίδρυμα και Σχολή/Τμήμα του υποβάλλοντος

Πανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μαθηματικών

Πίνακας περιεχομένων

Χορηγός

Βιβλιογραφική αναφορά

Ονόματα συντελεστών

Αριθμός σελίδων

Λεπτομέρειες μαθήματος

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced