On optimal improvements of classical iterative schemes for Z-matrices

dc.contributor.authorNoutsos, D.en
dc.contributor.authorTzoumas, M.en
dc.date.accessioned2015-11-24T17:26:16Z
dc.date.available2015-11-24T17:26:16Z
dc.identifier.issn0377-0427-
dc.identifier.urihttps://olympias.lib.uoi.gr/jspui/handle/123456789/13176
dc.rightsDefault Licence-
dc.subjectjacobi and gauss-seidel iterative methodsen
dc.subjectdiagonally dominant z and m-matricesen
dc.subjectgauss-seidel methoden
dc.subjectlinear-systemsen
dc.subjectconvergenceen
dc.subjectjacobien
dc.subjecteliminationen
dc.subjectoperatorsen
dc.titleOn optimal improvements of classical iterative schemes for Z-matricesen
heal.abstractMany researchers have considered preconditioners, applied to linear systems, whose matrix coefficient is a Z-or an M-matrix, that make the associated Jacobi and Gauss-Seidel methods converge asymptotically faster than the unpreconditioned ones. Such preconditioners are chosen so that they eliminate the off-diagonal elements of the same column or the elements of the first upper diagonal [Milaszewicz, LAA 93 (1987) 161-170], Gunawardena et al. [LAA 154-156 (1991) 123-143]. In this work we generalize the previous preconditioners to obtain optimal methods. "Good" Jacobi and Gauss-Seidel algorithms are given and preconditioners, that eliminate more than one entry per row, are also proposed and analyzed. Moreover, the behavior of the above preconditioners to the Krylov subspace methods is studied. (c) 2005 Elsevier B.V. All rights reserved.en
heal.accesscampus-
heal.fullTextAvailabilityTRUE-
heal.identifier.primaryDOI 10.1016/j.cam.2005.03.057-
heal.identifier.secondary<Go to ISI>://000234789100007-
heal.journalNameJournal of Computational and Applied Mathematicsen
heal.journalTypepeer reviewed-
heal.languageen-
heal.publicationDate2006-
heal.publisherElsevieren
heal.recordProviderΠανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μαθηματικώνel
heal.typejournalArticle-
heal.type.elΆρθρο Περιοδικούel
heal.type.enJournal articleen

Αρχεία

Φάκελος/Πακέτο αδειών

Προβολή: 1 - 1 of 1
Φόρτωση...
Μικρογραφία εικόνας
Ονομα:
license.txt
Μέγεθος:
1.74 KB
Μορφότυπο:
Item-specific license agreed upon to submission
Περιγραφή: