A comparison of 20 heterogeneity variance estimators in statistical synthesis of results from studies
Φόρτωση...
Ημερομηνία
Συγγραφείς
Πετροπούλου, Μαρία
Μαυρίδης, Δημήτρης
Τίτλος Εφημερίδας
Περιοδικό ISSN
Τίτλος τόμου
Εκδότης
Wiley
Περίληψη
Τύπος
Είδος δημοσίευσης σε συνέδριο
Είδος περιοδικού
peer-reviewed
Είδος εκπαιδευτικού υλικού
Όνομα συνεδρίου
Όνομα περιοδικού
Statistics in Medicine
Όνομα βιβλίου
Σειρά βιβλίου
Έκδοση βιβλίου
Συμπληρωματικός/δευτερεύων τίτλος
A simulation study
Περιγραφή
When we synthesize research findings via meta-analysis, it is common to assume that the true underlying effect differs across studies. There is a plethora of estimation methods available for the between-study variability. The widely used DerSimonian and Laird estimation method has been challenged but knowledge for the overall performance of heterogeneity estimators is incomplete. We identified 20 heterogeneity estimators in the literature and evaluated their performance in terms of bias, type error I rate and power via a simulation study. Moreover, we compared the Knapp and Hartung and the Wald-type method for estimating confidence interval for the summary estimate. Although previous simulation studies have suggested the Paule-Mandel (PM) estimator, it has not been compared with all the available estimators. For dichotomous outcomes, estimating heterogeneity through Markov Chain Monte Carlo is a good choice if the prior distribution for heterogeneity is informed by published Cochrane reviews. Non parametric bootstrap (DLb) performs well for all assessment criteria for both dichotomous and continuous outcomes. The positive DerSimonian and Laird (DLp) and the Hartung-Makambi (HM) estimators can be an alternative choice for dichotomous outcome when the heterogeneity values are close to 𝟎.𝟎𝟕 and for continuous outcome for all and for medium heterogeneity values (𝟎.𝟎𝟏,𝟎.𝟎𝟓), respectively. Hence, they are heterogeneity estimators (DLb; DLp) which perform better than the suggested PM. Maximum likelihood (ML) provide the best performance for both types of outcome in the absence of heterogeneity.
Περιγραφή
Λέξεις-κλειδιά
bias, type I error, heterogeneity variance estimators, power, simulation study
Θεματική κατηγορία
Παραπομπή
Σύνδεσμος
Γλώσσα
en
Εκδίδον τμήμα/τομέας
Όνομα επιβλέποντος
Εξεταστική επιτροπή
Γενική Περιγραφή / Σχόλια
Ίδρυμα και Σχολή/Τμήμα του υποβάλλοντος
Πανεπιστήμιο Ιωαννίνων. Σχολή Επιστημών Αγωγής. Παιδαγωγικό Τμήμα Δημοτικής Εκπαίδευσης.
Πίνακας περιεχομένων
Χορηγός
Βιβλιογραφική αναφορά
-
Ονόματα συντελεστών
Αριθμός σελίδων
Λεπτομέρειες μαθήματος
item.page.endorsement
item.page.review
item.page.supplemented
item.page.referenced
Άδεια Creative Commons
Άδεια χρήσης της εγγραφής: An error occurred on the license name.