A comparison of 20 heterogeneity variance estimators in statistical synthesis of results from studies

dc.contributor.authorΠετροπούλου, Μαρίαel
dc.contributor.authorΜαυρίδης, Δημήτρηςel
dc.date.accessioned2018-05-22T10:50:15Z
dc.date.available2018-05-22T10:50:15Z
dc.identifier.urihttps://olympias.lib.uoi.gr/jspui/handle/123456789/29117
dc.rightsAn error occurred on the license name.*
dc.rights.uriAn error occurred getting the license - uri.*
dc.subjectbiasen
dc.subjecttype I erroren
dc.subjectheterogeneity variance estimatorsen
dc.subjectpoweren
dc.subjectsimulation studyen
dc.titleA comparison of 20 heterogeneity variance estimators in statistical synthesis of results from studiesen
heal.abstractWhen we synthesize research findings via meta-analysis, it is common to assume that the true underlying effect differs across studies. There is a plethora of estimation methods available for the between-study variability. The widely used DerSimonian and Laird estimation method has been challenged but knowledge for the overall performance of heterogeneity estimators is incomplete. We identified 20 heterogeneity estimators in the literature and evaluated their performance in terms of bias, type error I rate and power via a simulation study. Moreover, we compared the Knapp and Hartung and the Wald-type method for estimating confidence interval for the summary estimate. Although previous simulation studies have suggested the Paule-Mandel (PM) estimator, it has not been compared with all the available estimators. For dichotomous outcomes, estimating heterogeneity through Markov Chain Monte Carlo is a good choice if the prior distribution for heterogeneity is informed by published Cochrane reviews. Non parametric bootstrap (DLb) performs well for all assessment criteria for both dichotomous and continuous outcomes. The positive DerSimonian and Laird (DLp) and the Hartung-Makambi (HM) estimators can be an alternative choice for dichotomous outcome when the heterogeneity values are close to 𝟎.𝟎𝟕 and for continuous outcome for all and for medium heterogeneity values (𝟎.𝟎𝟏,𝟎.𝟎𝟓), respectively. Hence, they are heterogeneity estimators (DLb; DLp) which perform better than the suggested PM. Maximum likelihood (ML) provide the best performance for both types of outcome in the absence of heterogeneity.en
heal.accessfree
heal.bibliographicCitation-en
heal.dateAvailable2018-05-22T10:51:15Z
heal.fullTextAvailabilitytrue
heal.journalNameStatistics in Medicineen
heal.journalTypepeer-reviewed
heal.languageen
heal.publicationDate2017
heal.publisherWileyen
heal.recordProviderΠανεπιστήμιο Ιωαννίνων. Σχολή Επιστημών Αγωγής. Παιδαγωγικό Τμήμα Δημοτικής Εκπαίδευσης.el
heal.secondaryTitleA simulation studyen
heal.typejournalArticle
heal.type.elΆρθρο περιοδικούel
heal.type.enJournal articleen

Αρχεία

Πρωτότυπος φάκελος/πακέτο

Προβολή: 1 - 3 of 3
Φόρτωση...
Μικρογραφία εικόνας
Ονομα:
Heterogeneity- Simulation study.pdf
Μέγεθος:
643.07 KB
Μορφότυπο:
Adobe Portable Document Format
Περιγραφή:
Κύριο Άρθρο
Φόρτωση...
Μικρογραφία εικόνας
Ονομα:
figures_supplementary.pdf
Μέγεθος:
592.63 KB
Μορφότυπο:
Adobe Portable Document Format
Περιγραφή:
Συμπληρωματικοί πίνακες
Φόρτωση...
Μικρογραφία εικόνας
Ονομα:
sup-0001-supplementary.pdf
Μέγεθος:
316.47 KB
Μορφότυπο:
Adobe Portable Document Format
Περιγραφή:
Συμπληρωματικά στοιχεία

Φάκελος/Πακέτο αδειών

Προβολή: 1 - 1 of 1
Φόρτωση...
Μικρογραφία εικόνας
Ονομα:
license.txt
Μέγεθος:
1.71 KB
Μορφότυπο:
Item-specific license agreed upon to submission
Περιγραφή: