On Legendre Curves in Contact 3-Manifolds

dc.contributor.authorBaikoussis, C.en
dc.contributor.authorBlair, D. E.en
dc.date.accessioned2015-11-24T17:26:12Z
dc.date.available2015-11-24T17:26:12Z
dc.identifier.issn0046-5755-
dc.identifier.urihttps://olympias.lib.uoi.gr/jspui/handle/123456789/13166
dc.rightsDefault Licence-
dc.titleOn Legendre Curves in Contact 3-Manifoldsen
heal.abstractIt is first observed that on a 3-dimensional Sasakian manifold the torsion of a Legendre curve is identically equal to + 1. It is then shown that, conversely, if a curve on a Sasakian 3-manifold has constant torsion + 1 and satisfies the initial conditions at one point for a Legendre curve, it is a Legendre curve. Furthermore, among contact metric structures, this property is characteristic of Sasakian metrics. For the standard contact structure on R3 with its standard Sasakian metric the curvature of a Legendre curve is shown to be twice the curvature of its projection to the xy-plane with respect to the Euclidean metric. Thus this metric on R3 is more natural for the study of Legendre curves than the Euclidean metric.en
heal.accesscampus-
heal.fullTextAvailabilityTRUE-
heal.identifier.primaryDoi 10.1007/Bf01610616-
heal.identifier.secondary<Go to ISI>://A1994NC73100003-
heal.identifier.secondaryhttp://download.springer.com/static/pdf/807/art%253A10.1007%252FBF01610616.pdf?auth66=1391675739_44d8c3c9539155b2044f1af1c4039dd8&ext=.pdf-
heal.journalNameGeometriae Dedicataen
heal.journalTypepeer reviewed-
heal.languageen-
heal.publicationDate1994-
heal.publisherSpringer Verlag (Germany)en
heal.recordProviderΠανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μαθηματικώνel
heal.typejournalArticle-
heal.type.elΆρθρο Περιοδικούel
heal.type.enJournal articleen

Αρχεία

Φάκελος/Πακέτο αδειών

Προβολή: 1 - 1 of 1
Φόρτωση...
Μικρογραφία εικόνας
Ονομα:
license.txt
Μέγεθος:
1.74 KB
Μορφότυπο:
Item-specific license agreed upon to submission
Περιγραφή: