A six stage approach for the diagnosis of the Alzheimer's disease based on fMRI data

dc.contributor.authorTripoliti, E. E.en
dc.contributor.authorFotiadis, D. I.en
dc.contributor.authorArgyropoulou, M.en
dc.contributor.authorManis, G.en
dc.date.accessioned2015-11-24T17:36:04Z
dc.date.available2015-11-24T17:36:04Z
dc.identifier.issn1532-0464-
dc.identifier.urihttps://olympias.lib.uoi.gr/jspui/handle/123456789/14203
dc.rightsDefault Licence-
dc.subjectalzheimer's diseaseen
dc.subjectclassificationen
dc.subjectfunctional magnetic resonance imagingen
dc.subjectrandom forestsen
dc.subjectsupport vector machinesen
dc.subjectmild cognitive impairmenten
dc.subjectactivation patternsen
dc.subjectdementiaen
dc.subjectyoungen
dc.subjectrisken
dc.titleA six stage approach for the diagnosis of the Alzheimer's disease based on fMRI dataen
heal.abstractThe aim of this work is to present an automated method that assists in the diagnosis of Alzheimer's disease and also supports the monitoring of the progression of the disease. The method is based on features extracted from the data acquired during an fMRI experiment. It consists of six stages: (a) preprocessing of fMRI data, (b) modeling of fMRI voxel time series using a Generalized Linear Model, (c) feature extraction from the fMRI data, (d) feature selection, (e) classification using classical and improved variations of the Random Forests algorithm and Support Vector Machines, and (f) conversion of the trees, of the Random Forest, to rules which have physical meaning. The method is evaluated using a dataset of 41 subjects. The results of the proposed method indicate the validity of the method in the diagnosis (accuracy 94%) and monitoring of the Alzheimer's disease (accuracy 97% and 99%). (C) 2009 Elsevier Inc. All rights reserved.en
heal.accesscampus-
heal.fullTextAvailabilityTRUE-
heal.identifier.primaryDOI 10.1016/j.jbi.2009.10.004-
heal.identifier.secondary<Go to ISI>://000276012800014-
heal.identifier.secondaryhttp://ac.els-cdn.com/S1532046409001464/1-s2.0-S1532046409001464-main.pdf?_tid=085d56046c5f8a78d21dbe827de5769a&acdnat=1339758714_dd9607fd18a24a7ba92e0c3cd84bf373-
heal.journalNameJ Biomed Informen
heal.journalTypepeer reviewed-
heal.languageen-
heal.publicationDate2010-
heal.publisherElsevieren
heal.recordProviderΠανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μηχανικών Επιστήμης Υλικώνel
heal.typejournalArticle-
heal.type.elΆρθρο Περιοδικούel
heal.type.enJournal articleen

Αρχεία

Φάκελος/Πακέτο αδειών

Προβολή: 1 - 1 of 1
Φόρτωση...
Μικρογραφία εικόνας
Ονομα:
license.txt
Μέγεθος:
1.74 KB
Μορφότυπο:
Item-specific license agreed upon to submission
Περιγραφή: