Global solutions approaching lines at infinity to second order nonlinear delay differential equations
dc.contributor.author | Philos, C. G. | en |
dc.contributor.author | Purnaras, I. K. | en |
dc.contributor.author | Tsamatos, P. C. | en |
dc.date.accessioned | 2015-11-24T17:24:24Z | |
dc.date.available | 2015-11-24T17:24:24Z | |
dc.identifier.issn | 0532-8721 | - |
dc.identifier.uri | https://olympias.lib.uoi.gr/jspui/handle/123456789/12891 | |
dc.rights | Default Licence | - |
dc.subject | nonlinear differential equation | en |
dc.subject | delay differential equation | en |
dc.subject | ordinary differential equation | en |
dc.subject | asymptotic behavior | en |
dc.subject | asymptotic properties | en |
dc.subject | asymptotic expansions | en |
dc.subject | global solutions | en |
dc.subject | asymptotic to lines solutions | en |
dc.subject | fixed point theory | en |
dc.subject | prescribed asymptotic-behavior | en |
dc.subject | boundary-value-problems | en |
dc.subject | positive solutions | en |
dc.subject | half-line | en |
dc.subject | unbounded solutions | en |
dc.subject | existence | en |
dc.title | Global solutions approaching lines at infinity to second order nonlinear delay differential equations | en |
heal.abstract | This article is concerned with second order nonlinear delay, and especially ordinary, differential equations. By the use of the fixed point technique based on the classical Schauder's theorem, for any given line, sufficient conditions are established in order that there exists at least one global solution which is asymptotic at 00 to this line. In the special case of ordinary differential equations, via the Banach's Contraction Principle, for any given line, conditions are presented which guarantee that there exists a unique global solution that is asymptotic at infinity to this line. The application of the results obtained to second order delay, and ordinary, differential equations of Emden-Fowler type is presented, and some examples demonstrating the applicability of the results are given. Finally, some supplementary results are obtained, which provide sufficient conditions for all global solutions belonging to a suitable class to be asymptotic at infinity to lines. | en |
heal.access | campus | - |
heal.fullTextAvailability | TRUE | - |
heal.identifier.primary | Doi 10.1619/Fesi.50.213 | - |
heal.identifier.secondary | <Go to ISI>://000253419400003 | - |
heal.identifier.secondary | https://www.jstage.jst.go.jp/article/fesi/50/2/50_2_213/_pdf | - |
heal.journalName | Funkcialaj Ekvacioj-Serio Internacia | en |
heal.journalType | peer reviewed | - |
heal.language | en | - |
heal.publicationDate | 2007 | - |
heal.publisher | Japana Matematika Societo | en |
heal.recordProvider | Πανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μαθηματικών | el |
heal.type | journalArticle | - |
heal.type.el | Άρθρο Περιοδικού | el |
heal.type.en | Journal article | en |
Files
License bundle
1 - 1 of 1
Loading...
- Name:
- license.txt
- Size:
- 1.74 KB
- Format:
- Item-specific license agreed upon to submission
- Description: