Global solutions approaching lines at infinity to second order nonlinear delay differential equations

dc.contributor.authorPhilos, C. G.en
dc.contributor.authorPurnaras, I. K.en
dc.contributor.authorTsamatos, P. C.en
dc.date.accessioned2015-11-24T17:24:24Z
dc.date.available2015-11-24T17:24:24Z
dc.identifier.issn0532-8721-
dc.identifier.urihttps://olympias.lib.uoi.gr/jspui/handle/123456789/12891
dc.rightsDefault Licence-
dc.subjectnonlinear differential equationen
dc.subjectdelay differential equationen
dc.subjectordinary differential equationen
dc.subjectasymptotic behavioren
dc.subjectasymptotic propertiesen
dc.subjectasymptotic expansionsen
dc.subjectglobal solutionsen
dc.subjectasymptotic to lines solutionsen
dc.subjectfixed point theoryen
dc.subjectprescribed asymptotic-behavioren
dc.subjectboundary-value-problemsen
dc.subjectpositive solutionsen
dc.subjecthalf-lineen
dc.subjectunbounded solutionsen
dc.subjectexistenceen
dc.titleGlobal solutions approaching lines at infinity to second order nonlinear delay differential equationsen
heal.abstractThis article is concerned with second order nonlinear delay, and especially ordinary, differential equations. By the use of the fixed point technique based on the classical Schauder's theorem, for any given line, sufficient conditions are established in order that there exists at least one global solution which is asymptotic at 00 to this line. In the special case of ordinary differential equations, via the Banach's Contraction Principle, for any given line, conditions are presented which guarantee that there exists a unique global solution that is asymptotic at infinity to this line. The application of the results obtained to second order delay, and ordinary, differential equations of Emden-Fowler type is presented, and some examples demonstrating the applicability of the results are given. Finally, some supplementary results are obtained, which provide sufficient conditions for all global solutions belonging to a suitable class to be asymptotic at infinity to lines.en
heal.accesscampus-
heal.fullTextAvailabilityTRUE-
heal.identifier.primaryDoi 10.1619/Fesi.50.213-
heal.identifier.secondary<Go to ISI>://000253419400003-
heal.identifier.secondaryhttps://www.jstage.jst.go.jp/article/fesi/50/2/50_2_213/_pdf-
heal.journalNameFunkcialaj Ekvacioj-Serio Internaciaen
heal.journalTypepeer reviewed-
heal.languageen-
heal.publicationDate2007-
heal.publisherJapana Matematika Societoen
heal.recordProviderΠανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μαθηματικώνel
heal.typejournalArticle-
heal.type.elΆρθρο Περιοδικούel
heal.type.enJournal articleen

Files

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.74 KB
Format:
Item-specific license agreed upon to submission
Description: