Interaction of modulated pulses in the nonlinear Schrodinger equation with periodic potential

dc.contributor.authorGiannoulis, J.en
dc.contributor.authorMielke, A.en
dc.contributor.authorSparber, C.en
dc.date.accessioned2015-11-24T17:24:53Z
dc.date.available2015-11-24T17:24:53Z
dc.identifier.issn0022-0396-
dc.identifier.urihttps://olympias.lib.uoi.gr/jspui/handle/123456789/12967
dc.rightsDefault Licence-
dc.subjectnonlinear schrodinger equationen
dc.subjectbloch eigenvalue problemen
dc.subjecttwo scale asymptoticsen
dc.subjectmodulation equationsen
dc.subjectfour-wave interactionen
dc.subjectbloch wavesen
dc.subjectdynamicsen
dc.subjectasymptoticsen
dc.titleInteraction of modulated pulses in the nonlinear Schrodinger equation with periodic potentialen
heal.abstractWe consider a cubic nonlinear Schrodinger equation with periodic potential. In a semiclassical scaling the nonlinear interaction of modulated pulses concentrated in one or several Bloch bands is studied. The notion of closed mode systems is introduced which allows for the rigorous derivation of a finite system of amplitude equations describing the macroscopic interaction of these pulses. (C) 2008 Elsevier Inc. All rights reserved.en
heal.accesscampus-
heal.fullTextAvailabilityTRUE-
heal.identifier.primaryDOI 10.1016/j.jde.2008.05.001-
heal.identifier.secondary<Go to ISI>://000257169500005-
heal.identifier.secondaryhttp://ac.els-cdn.com/S0022039608002143/1-s2.0-S0022039608002143-main.pdf?_tid=cb855233e37e3aec1fe6487bd17c2717&acdnat=1339055496_5728577d983b975d05b54eb37eb92914-
heal.journalNameJournal of Differential Equationsen
heal.journalTypepeer reviewed-
heal.languageen-
heal.publicationDate2008-
heal.publisherElsevieren
heal.recordProviderΠανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μαθηματικώνel
heal.typejournalArticle-
heal.type.elΆρθρο Περιοδικούel
heal.type.enJournal articleen

Αρχεία

Φάκελος/Πακέτο αδειών

Προβολή: 1 - 1 of 1
Φόρτωση...
Μικρογραφία εικόνας
Ονομα:
license.txt
Μέγεθος:
1.74 KB
Μορφότυπο:
Item-specific license agreed upon to submission
Περιγραφή: