Optimum modified extrapolated Jacobi method for some class of matrices
| dc.contributor.author | Psimarni, A. | en |
| dc.date.accessioned | 2015-11-24T17:27:06Z | |
| dc.date.available | 2015-11-24T17:27:06Z | |
| dc.identifier.issn | 0020-7160 | - |
| dc.identifier.uri | https://olympias.lib.uoi.gr/jspui/handle/123456789/13311 | |
| dc.rights | Default Licence | - |
| dc.subject | iterative methods (jacobi, gauss-seidel, successive overrelaxation (sor), accelerated overrelaxation (aor), modified sor (msor)) | en |
| dc.subject | extrapolated methods | en |
| dc.subject | consistently ordered 2-cyclic matrices | en |
| dc.title | Optimum modified extrapolated Jacobi method for some class of matrices | en |
| heal.abstract | In this paper we study a two parametric linear stationary iterative method, called Modified Extrapolated Jacobi (MEJ) method, for solving linear systems Ax = b, where A is nonsingular consistently ordered 2-cyclic matrix. We give sufficient and necessary conditions for strong convergence of the MEJ method and we determine the optimum extrapolation parameters and the optimum spectral radius of it, in the case where all the eigenvalues of the block Jacobi iteration matrix associated with A are purely imaginary. In the last section, we compare the MEJ with other known methods. | en |
| heal.access | campus | - |
| heal.fullTextAvailability | TRUE | - |
| heal.identifier.secondary | <Go to ISI>://A1995UH02600009 | - |
| heal.journalName | International Journal of Computer Mathematics | en |
| heal.journalType | peer reviewed | - |
| heal.language | en | - |
| heal.publicationDate | 1995 | - |
| heal.publisher | Taylor & Francis | en |
| heal.recordProvider | Πανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μαθηματικών | el |
| heal.type | journalArticle | - |
| heal.type.el | Άρθρο Περιοδικού | el |
| heal.type.en | Journal article | en |
Αρχεία
Φάκελος/Πακέτο αδειών
1 - 1 of 1
Φόρτωση...
- Ονομα:
- license.txt
- Μέγεθος:
- 1.74 KB
- Μορφότυπο:
- Item-specific license agreed upon to submission
- Περιγραφή:
