Asymptotic Analysis of Pulse Dynamics in Mode-Locked Lasers

Φόρτωση...
Μικρογραφία εικόνας

Ημερομηνία

Συγγραφείς

Ablowitz, M. J.
Horikis, T. P.
Nixon, S. D.
Zhu, Y.

Τίτλος Εφημερίδας

Περιοδικό ISSN

Τίτλος τόμου

Εκδότης

Wiley-Blackwell

Περίληψη

Τύπος

Είδος δημοσίευσης σε συνέδριο

Είδος περιοδικού

peer reviewed

Είδος εκπαιδευτικού υλικού

Όνομα συνεδρίου

Όνομα περιοδικού

Studies in Applied Mathematics

Όνομα βιβλίου

Σειρά βιβλίου

Έκδοση βιβλίου

Συμπληρωματικός/δευτερεύων τίτλος

Περιγραφή

Solitons of the power-energy saturation (PES) equation are studied using adiabatic perturbation theory. In the anomalous regime individual soliton pulses are found to be well approximated by solutions of the classical nonlinear Schrodinger (NLS) equation with the key parameters of the soliton changing slowly as they evolve. Evolution equations are found for the pulse amplitude(s), velocity(les), position(s), and phase(s) using integral relations derived from the PES equation. The results from the integral relations are shown to agree with multi-scale perturbation theory. It is shown that the single soliton case exhibits mode-locking behavior for a wide range of parameters, while the higher states form effective bound states. Using the fact that there is weak overlap between tails of interacting solitons, evolution equations are derived for the relative amplitudes, velocities, positions, and phase differences. Comparisons of interacting soliton behavior between the PES equation and the classical NLS equation are also exhibited.

Περιγραφή

Λέξεις-κλειδιά

locking

Θεματική κατηγορία

Παραπομπή

Σύνδεσμος

<Go to ISI>://000266557000005

Γλώσσα

en

Εκδίδον τμήμα/τομέας

Όνομα επιβλέποντος

Εξεταστική επιτροπή

Γενική Περιγραφή / Σχόλια

Ίδρυμα και Σχολή/Τμήμα του υποβάλλοντος

Πανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μαθηματικών

Πίνακας περιεχομένων

Χορηγός

Βιβλιογραφική αναφορά

Ονόματα συντελεστών

Αριθμός σελίδων

Λεπτομέρειες μαθήματος

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced