Asymptotic Analysis of Pulse Dynamics in Mode-Locked Lasers

dc.contributor.authorAblowitz, M. J.en
dc.contributor.authorHorikis, T. P.en
dc.contributor.authorNixon, S. D.en
dc.contributor.authorZhu, Y.en
dc.date.accessioned2015-11-24T17:21:59Z
dc.date.available2015-11-24T17:21:59Z
dc.identifier.issn0022-2526-
dc.identifier.urihttps://olympias.lib.uoi.gr/jspui/handle/123456789/12552
dc.rightsDefault Licence-
dc.subjectlockingen
dc.titleAsymptotic Analysis of Pulse Dynamics in Mode-Locked Lasersen
heal.abstractSolitons of the power-energy saturation (PES) equation are studied using adiabatic perturbation theory. In the anomalous regime individual soliton pulses are found to be well approximated by solutions of the classical nonlinear Schrodinger (NLS) equation with the key parameters of the soliton changing slowly as they evolve. Evolution equations are found for the pulse amplitude(s), velocity(les), position(s), and phase(s) using integral relations derived from the PES equation. The results from the integral relations are shown to agree with multi-scale perturbation theory. It is shown that the single soliton case exhibits mode-locking behavior for a wide range of parameters, while the higher states form effective bound states. Using the fact that there is weak overlap between tails of interacting solitons, evolution equations are derived for the relative amplitudes, velocities, positions, and phase differences. Comparisons of interacting soliton behavior between the PES equation and the classical NLS equation are also exhibited.en
heal.accesscampus-
heal.fullTextAvailabilityTRUE-
heal.identifier.secondary<Go to ISI>://000266557000005-
heal.journalNameStudies in Applied Mathematicsen
heal.journalTypepeer reviewed-
heal.languageen-
heal.publicationDate2009-
heal.publisherWiley-Blackwellen
heal.recordProviderΠανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μαθηματικώνel
heal.typejournalArticle-
heal.type.elΆρθρο Περιοδικούel
heal.type.enJournal articleen

Αρχεία

Φάκελος/Πακέτο αδειών

Προβολή: 1 - 1 of 1
Φόρτωση...
Μικρογραφία εικόνας
Ονομα:
license.txt
Μέγεθος:
1.74 KB
Μορφότυπο:
Item-specific license agreed upon to submission
Περιγραφή: