A novel method for automated EMG decomposition and MUAP classification

dc.contributor.authorKatsis, C. D.en
dc.contributor.authorGoletsis, Y.en
dc.contributor.authorLikas, A.en
dc.contributor.authorFotiadis, D. I.en
dc.contributor.authorSarmas, I.en
dc.date.accessioned2015-11-24T17:34:45Z
dc.date.available2015-11-24T17:34:45Z
dc.identifier.issn0933-3657-
dc.identifier.urihttps://olympias.lib.uoi.gr/jspui/handle/123456789/14025
dc.rightsDefault Licence-
dc.subjectquantitative electromyographyen
dc.subjectetectromyogram decompositionen
dc.subjectmotor unit action potential detection and classificationen
dc.subjectsupport vector machineen
dc.subjectelectromyographic signalsen
dc.subjectaction-potentialsen
dc.subjectquantitative-analysisen
dc.titleA novel method for automated EMG decomposition and MUAP classificationen
heal.abstractObjective: This paper proposes a novel method for the extraction and classification of individual motor unit action potentials (MUAPs) from intramuscular electromyographic signals. Methodology: The proposed method automatically detects the number of template MUAP clusters and classifies them into normal, neuropathic or myopathic. It consists of three steps: (i) preprocessing of electromyogram (EMG) recordings, (ii) MUAP detection and clustering and (iii) MUAP classification. Results: The approach has been validated using a dataset of EMG recordings and an annotated collection of MUAPs. The correct identification rate for MUAP clustering is 93, 95 and 92% for normal, myopathic and neuropathic, respectively. Ninety-one percent of the superimposed MUAPs were correctly identified. The obtained accuracy for MUAP classification is about 86%. Conclusion: The proposed method, apart from efficient EMG decomposition addresses automatic MUAP classification to neuropathic, myopathic or normal classes directly from raw EMG signals. (C) 2005 Elsevier B.V. All rights reserved.en
heal.accesscampus-
heal.fullTextAvailabilityTRUE-
heal.identifier.primaryDOI 10.1016/j.artmed.2005.09.002-
heal.identifier.secondary<Go to ISI>://000237744000006-
heal.identifier.secondaryhttp://ac.els-cdn.com/S0933365705001065/1-s2.0-S0933365705001065-main.pdf?_tid=60f5a20504bdabbca0b1543403c94757&acdnat=1339758072_311f1fd9edc64fc97ed2baeb25a89d74-
heal.journalNameArtif Intell Meden
heal.journalTypepeer reviewed-
heal.languageen-
heal.publicationDate2006-
heal.publisherElsevieren
heal.recordProviderΠανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μηχανικών Επιστήμης Υλικώνel
heal.typejournalArticle-
heal.type.elΆρθρο Περιοδικούel
heal.type.enJournal articleen

Αρχεία

Φάκελος/Πακέτο αδειών

Προβολή: 1 - 1 of 1
Φόρτωση...
Μικρογραφία εικόνας
Ονομα:
license.txt
Μέγεθος:
1.74 KB
Μορφότυπο:
Item-specific license agreed upon to submission
Περιγραφή: