On automated assessment of Levodopa-induced dyskinesia in Parkinson's disease

dc.contributor.authorTsipouras, M. G.en
dc.contributor.authorTzallas, A. T.en
dc.contributor.authorFotiadis, D. I.en
dc.contributor.authorKonitsiotis, S.en
dc.date.accessioned2015-11-24T19:01:05Z
dc.date.available2015-11-24T19:01:05Z
dc.identifier.issn1557-170X-
dc.identifier.urihttps://olympias.lib.uoi.gr/jspui/handle/123456789/19642
dc.rightsDefault Licence-
dc.titleOn automated assessment of Levodopa-induced dyskinesia in Parkinson's diseaseen
heal.abstractA method for the analysis of accelerometer and gyroscope signals in order to automatically assess the Levodopa-induced dyskinesia (LID) in patients with Parkinson's disease is presented in this paper. Several accelerometers and gyroscopes are placed on certain positions on the subject's body and the obtained signals are analyzed in order to extract several features that depict the energy distribution over the frequency spectrum and the non-linear properties of the signal. These features are fed into an artificial neural network which is used for LID detection and severity classification. The method has been evaluated using a group of 29 subjects. Results are presented related to the body locations that the accelerometers and the gyroscopes are placed. The obtained results indicate high classification ability (84.3% average classification accuracy).en
heal.accesscampus-
heal.fullTextAvailabilityTRUE-
heal.identifier.primary10.1109/IEMBS.2011.6090736-
heal.identifier.secondaryhttp://www.ncbi.nlm.nih.gov/pubmed/22254893-
heal.identifier.secondaryhttp://ieeexplore.ieee.org/ielx5/6067544/6089866/06090736.pdf?tp=&arnumber=6090736&isnumber=6089866-
heal.journalNameConf Proc IEEE Eng Med Biol Socen
heal.journalTypepeer-reviewed-
heal.languageen-
heal.publicationDate2011-
heal.recordProviderΠανεπιστήμιο Ιωαννίνων. Σχολή Επιστημών Υγείας. Τμήμα Ιατρικήςel
heal.typejournalArticle-
heal.type.elΆρθρο Περιοδικούel
heal.type.enJournal articleen

Αρχεία

Φάκελος/Πακέτο αδειών

Προβολή: 1 - 1 of 1
Φόρτωση...
Μικρογραφία εικόνας
Ονομα:
license.txt
Μέγεθος:
1.74 KB
Μορφότυπο:
Item-specific license agreed upon to submission
Περιγραφή: