A Solution of the 4th Clay Millennium Problem about the Navier-Stokes Equations.

dc.contributor.authorKonstantinos E. Kyritsisen
dc.date.accessioned2022-09-19T07:18:09Z
dc.date.available2022-09-19T07:18:09Z
dc.identifier.urihttps://olympias.lib.uoi.gr/jspui/handle/123456789/31923
dc.identifier.urihttp://dx.doi.org/10.26268/heal.uoi.11738
dc.rightsCC0 1.0 Universal*
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/*
dc.subjectNavier-Stokes equationsen
dc.subjectIncompressible flowsen
dc.subjectMillennium mathematical problemsen
dc.subjectRegularityen
dc.subjectBlow-upen
dc.titleA Solution of the 4th Clay Millennium Problem about the Navier-Stokes Equations.en
heal.abstractIn this paper it is solved the 4th Clay Millennium problem about the Navier-Stokes equations, in the direction of regularity (no blow-up). This is proved for the Navier-Stokes equations for the non-periodic formulation and without external forcing (homogeneous case). The proof is based on discovering a new invariant as a 2D surface density of (rotatory) momentum, derived from the well-known Helmholtz-Kelvin-Stokes velocity circulation invariant. This invariant is indispensable, besides to the ordinary momentum conservation, to prove that there cannot be a blow-up in finite time, of the point vorticities, thus regularity. .It is proved that not only there is no Blow-up in finite time but not even at the time T=+∞.en
heal.accessfreeel
heal.bibliographicCitationA Solution of the 4th Clay Millennium Problem about the Navier-Stokes Equations. World Journal of Research and Review August 2021 13(2):26-35en
heal.classificationMATHEMATICAL PHYSICSen
heal.dateAvailable2022-09-19T07:19:10Z
heal.fullTextAvailabilitytrue
heal.journalNameWorld journal of research and reviewen
heal.journalTypepeer-reviewedel
heal.languageenel
heal.publicationDate2021-08-30
heal.publisherWorld journal of research and reviewen
heal.recordProviderUniversity of Iannina, School of Economic and Administrative Sciences, Dept of Accouning-Financeen
heal.typejournalArticleel
heal.type.elΆρθρο περιοδικούel
heal.type.enJournal articleen

Αρχεία

Πρωτότυπος φάκελος/πακέτο

Προβολή: 1 - 1 of 1
Φόρτωση...
Μικρογραφία εικόνας
Ονομα:
WJRR1302008_corrected_16_09_22.pdf
Μέγεθος:
804.15 KB
Μορφότυπο:
Adobe Portable Document Format
Περιγραφή:

Φάκελος/Πακέτο αδειών

Προβολή: 1 - 1 of 1
Φόρτωση...
Μικρογραφία εικόνας
Ονομα:
license.txt
Μέγεθος:
1.71 KB
Μορφότυπο:
Item-specific license agreed upon to submission
Περιγραφή: