An experimental comparison of neural algorithms for independent component analysis and blind separation
Φόρτωση...
Ημερομηνία
Συγγραφείς
Giannakopoulos, X.
Karhunen, J.
Oja, E.
Τίτλος Εφημερίδας
Περιοδικό ISSN
Τίτλος τόμου
Εκδότης
Περίληψη
Τύπος
Είδος δημοσίευσης σε συνέδριο
Είδος περιοδικού
peer-reviewed
Είδος εκπαιδευτικού υλικού
Όνομα συνεδρίου
Όνομα περιοδικού
Int J Neural Syst
Όνομα βιβλίου
Σειρά βιβλίου
Έκδοση βιβλίου
Συμπληρωματικός/δευτερεύων τίτλος
Περιγραφή
In this paper, we compare the performance of five prominent neural or adaptive algorithms designed for Independent Component Analysis (ICA) and blind source separation (BSS). In the first part of the study, we use artificial data for comparing the accuracy, convergence speed, computational load, and other relevant properties of the algorithms. In the second part, the algorithms are applied to three different real-world data sets. The task is either blind source separation or finding interesting directions in the data for visualisation purposes. We develop criteria for selecting the most meaningful basis vectors of ICA and measuring the quality of the results. The comparison reveals characteristic differences between the studied ICA algorithms. The most important conclusions of our comparison are robustness of the ICA algorithms with respect to modest modeling imperfections, and the superiority of fixed-point algorithms with respect to the computational load.
Περιγραφή
Λέξεις-κλειδιά
*Algorithms, Animals, Artifacts, Brachyura, Brain/cytology/physiology, Computational Biology, Female, Humans, Learning/physiology, Linear Models, Magnetoencephalography, Male, *Neural Networks (Computer), Neurons/physiology, Nonlinear Dynamics, Spacecraft
Θεματική κατηγορία
Παραπομπή
Σύνδεσμος
http://www.ncbi.nlm.nih.gov/pubmed/10529083
Γλώσσα
en
Εκδίδον τμήμα/τομέας
Όνομα επιβλέποντος
Εξεταστική επιτροπή
Γενική Περιγραφή / Σχόλια
Ίδρυμα και Σχολή/Τμήμα του υποβάλλοντος
Πανεπιστήμιο Ιωαννίνων. Σχολή Επιστημών Υγείας. Τμήμα Ιατρικής