An experimental comparison of neural algorithms for independent component analysis and blind separation

dc.contributor.authorGiannakopoulos, X.en
dc.contributor.authorKarhunen, J.en
dc.contributor.authorOja, E.en
dc.date.accessioned2015-11-24T19:36:32Z
dc.date.available2015-11-24T19:36:32Z
dc.identifier.issn0129-0657-
dc.identifier.urihttps://olympias.lib.uoi.gr/jspui/handle/123456789/23895
dc.rightsDefault Licence-
dc.subject*Algorithmsen
dc.subjectAnimalsen
dc.subjectArtifactsen
dc.subjectBrachyuraen
dc.subjectBrain/cytology/physiologyen
dc.subjectComputational Biologyen
dc.subjectFemaleen
dc.subjectHumansen
dc.subjectLearning/physiologyen
dc.subjectLinear Modelsen
dc.subjectMagnetoencephalographyen
dc.subjectMaleen
dc.subject*Neural Networks (Computer)en
dc.subjectNeurons/physiologyen
dc.subjectNonlinear Dynamicsen
dc.subjectSpacecraften
dc.titleAn experimental comparison of neural algorithms for independent component analysis and blind separationen
heal.abstractIn this paper, we compare the performance of five prominent neural or adaptive algorithms designed for Independent Component Analysis (ICA) and blind source separation (BSS). In the first part of the study, we use artificial data for comparing the accuracy, convergence speed, computational load, and other relevant properties of the algorithms. In the second part, the algorithms are applied to three different real-world data sets. The task is either blind source separation or finding interesting directions in the data for visualisation purposes. We develop criteria for selecting the most meaningful basis vectors of ICA and measuring the quality of the results. The comparison reveals characteristic differences between the studied ICA algorithms. The most important conclusions of our comparison are robustness of the ICA algorithms with respect to modest modeling imperfections, and the superiority of fixed-point algorithms with respect to the computational load.en
heal.accesscampus-
heal.fullTextAvailabilityTRUE-
heal.identifier.secondaryhttp://www.ncbi.nlm.nih.gov/pubmed/10529083-
heal.journalNameInt J Neural Systen
heal.journalTypepeer-reviewed-
heal.languageen-
heal.publicationDate1999-
heal.recordProviderΠανεπιστήμιο Ιωαννίνων. Σχολή Επιστημών Υγείας. Τμήμα Ιατρικήςel
heal.typejournalArticle-
heal.type.elΆρθρο Περιοδικούel
heal.type.enJournal articleen

Αρχεία

Φάκελος/Πακέτο αδειών

Προβολή: 1 - 1 of 1
Φόρτωση...
Μικρογραφία εικόνας
Ονομα:
license.txt
Μέγεθος:
1.74 KB
Μορφότυπο:
Item-specific license agreed upon to submission
Περιγραφή: