Modularity-Based Fairness in Network Communities

dc.contributor.authorManolis, Konstantinosen
dc.date.accessioned2024-03-22T09:03:11Z
dc.date.available2024-03-22T09:03:11Z
dc.identifier.urihttps://olympias.lib.uoi.gr/jspui/handle/123456789/37053
dc.identifier.urihttp://dx.doi.org/10.26268/heal.uoi.16764
dc.rightsCC0 1.0 Universal*
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/*
dc.subjectSocial Networs, Community Detection, Community Fairnessen
dc.titleModularity-Based Fairness in Network Communitiesen
dc.typemasterThesisen
heal.abstractIn this thesis, we study the fairness of community structures in networks from a group-based perspective. Specifically, we assume that individuals in a social network belong to different groups based on the value of one of their sensitive attributes, such as their age, gender, or race. We view community fairness as the lack of discrimination towards any of the groups. For simplicity, let us assume that nodes belong to two groups, the blue and the red group. We introduce three fairness metrics. The first metric, termed balance-fairness, equitably represents communities by ensuring an equal distribution of red and blue nodes in each community. The second, termed modularity-fairness, refines the notion of modularity to demand equal intracommunity connectivity for the groups. The third metric, termed diversity-fairness, promotes intra-community edges between nodes of different color thus addressing the filter-bubble phenomenon. We have modified the Louvain algorithm, a well-known community detection algorithm, to produce communities that are both well-connected and fair. We present an extensive evaluation using several real-world and synthetic networks. The goal of our evaluation is twofold: (1) to study the fairness of communities in networks and the causes of unfairness and (2) to evaluate the effectiveness of our fairness-enhanced Louvain algorithm.en
heal.academicPublisherΠανεπιστήμιο Ιωαννίνων. Πολυτεχνική Σχολή. Τμήμα Μηχανικών Ηλεκτρονικών Υπολογιστών και Πληροφορικήςel
heal.academicPublisherIDuoiel
heal.accessfreeel
heal.advisorNamePitoura, Evaggeliaen
heal.classificationSocial Networks
heal.committeeMemberNameLykas, Aristidisen
heal.committeeMemberNameTsaparas, Panagiotisen
heal.dateAvailable2024-03-22T09:04:12Z
heal.fullTextAvailabilitytrue
heal.identifier.secondarySocial Networksel
heal.languageenel
heal.publicationDate2024-02-23
heal.recordProviderΠανεπιστήμιο Ιωαννίνων. Πολυτεχνική Σχολήel
heal.secondaryTitleModularity-Based Fairness in Network Communitiesen
heal.typemasterThesisel
heal.type.elΜεταπτυχιακή εργασίαel
heal.type.enMaster thesisen

Αρχεία

Πρωτότυπος φάκελος/πακέτο

Προβολή: 1 - 2 of 2
Φόρτωση...
Μικρογραφία εικόνας
Ονομα:
Social_Networks_Thesis.pdf
Μέγεθος:
1.27 MB
Μορφότυπο:
Adobe Portable Document Format
Περιγραφή:
Φόρτωση...
Μικρογραφία εικόνας
Ονομα:
Social_Networks_Thesis.pdf
Μέγεθος:
1.27 MB
Μορφότυπο:
Adobe Portable Document Format
Περιγραφή:

Φάκελος/Πακέτο αδειών

Προβολή: 1 - 1 of 1
Φόρτωση...
Μικρογραφία εικόνας
Ονομα:
license.txt
Μέγεθος:
3.22 KB
Μορφότυπο:
Item-specific license agreed upon to submission
Περιγραφή: