Singular integral equations, Liapunov functionals, and resolvents
dc.contributor.author | Becker, L. C. | en |
dc.contributor.author | Burton, T. A. | en |
dc.contributor.author | Purnaras, I. K. | en |
dc.date.accessioned | 2015-11-24T17:28:01Z | |
dc.date.available | 2015-11-24T17:28:01Z | |
dc.identifier.issn | 0362-546X | - |
dc.identifier.uri | https://olympias.lib.uoi.gr/jspui/handle/123456789/13488 | |
dc.rights | Default Licence | - |
dc.subject | integral equations | en |
dc.subject | fractional differential equations | en |
dc.subject | liapunov functionals | en |
dc.subject | singular kernels | en |
dc.title | Singular integral equations, Liapunov functionals, and resolvents | en |
heal.abstract | This paper, together with a recent paper by the second author on convex singular kernels, establishes a base for further investigation of mildly singular equations with Liapunov theory. We study the two nonlinear scalar integral equations x(t) = a(t) - integral(t)(0) D(t,s)[x(s) + G(s, x(s))]ds and z(t) = a(t) - integral(t)(0) D(t,s)g(s,z(s))ds where D has a singularity at t = s. The first equation is decomposed into three other simpler equations. We then construct a Liapunov functional for each of the equations which will yield L-p properties of the solutions. (C) 2012 Elsevier Ltd. All rights reserved. | en |
heal.access | campus | - |
heal.fullTextAvailability | TRUE | - |
heal.identifier.primary | Doi 10.1016/J.Na.2011.10.050 | - |
heal.identifier.secondary | <Go to ISI>://000300526100001 | - |
heal.identifier.secondary | http://ac.els-cdn.com/S0362546X11008509/1-s2.0-S0362546X11008509-main.pdf?_tid=91bb49be-cf38-11e2-ad17-00000aab0f27&acdnat=1370585444_bbf38dd307b34a41ced036c453c225bb | - |
heal.journalName | Nonlinear Analysis-Theory Methods & Applications | en |
heal.journalType | peer reviewed | - |
heal.language | en | - |
heal.publicationDate | 2012 | - |
heal.publisher | Elsevier | en |
heal.recordProvider | Πανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μαθηματικών | el |
heal.type | journalArticle | - |
heal.type.el | Άρθρο Περιοδικού | el |
heal.type.en | Journal article | en |
Files
License bundle
1 - 1 of 1
Loading...
- Name:
- license.txt
- Size:
- 1.74 KB
- Format:
- Item-specific license agreed upon to submission
- Description: