Singular integral equations, Liapunov functionals, and resolvents

dc.contributor.authorBecker, L. C.en
dc.contributor.authorBurton, T. A.en
dc.contributor.authorPurnaras, I. K.en
dc.date.accessioned2015-11-24T17:28:01Z
dc.date.available2015-11-24T17:28:01Z
dc.identifier.issn0362-546X-
dc.identifier.urihttps://olympias.lib.uoi.gr/jspui/handle/123456789/13488
dc.rightsDefault Licence-
dc.subjectintegral equationsen
dc.subjectfractional differential equationsen
dc.subjectliapunov functionalsen
dc.subjectsingular kernelsen
dc.titleSingular integral equations, Liapunov functionals, and resolventsen
heal.abstractThis paper, together with a recent paper by the second author on convex singular kernels, establishes a base for further investigation of mildly singular equations with Liapunov theory. We study the two nonlinear scalar integral equations x(t) = a(t) - integral(t)(0) D(t,s)[x(s) + G(s, x(s))]ds and z(t) = a(t) - integral(t)(0) D(t,s)g(s,z(s))ds where D has a singularity at t = s. The first equation is decomposed into three other simpler equations. We then construct a Liapunov functional for each of the equations which will yield L-p properties of the solutions. (C) 2012 Elsevier Ltd. All rights reserved.en
heal.accesscampus-
heal.fullTextAvailabilityTRUE-
heal.identifier.primaryDoi 10.1016/J.Na.2011.10.050-
heal.identifier.secondary<Go to ISI>://000300526100001-
heal.identifier.secondaryhttp://ac.els-cdn.com/S0362546X11008509/1-s2.0-S0362546X11008509-main.pdf?_tid=91bb49be-cf38-11e2-ad17-00000aab0f27&acdnat=1370585444_bbf38dd307b34a41ced036c453c225bb-
heal.journalNameNonlinear Analysis-Theory Methods & Applicationsen
heal.journalTypepeer reviewed-
heal.languageen-
heal.publicationDate2012-
heal.publisherElsevieren
heal.recordProviderΠανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μαθηματικώνel
heal.typejournalArticle-
heal.type.elΆρθρο Περιοδικούel
heal.type.enJournal articleen

Files

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.74 KB
Format:
Item-specific license agreed upon to submission
Description: