Minimal surfaces in a sphere and the Ricci condition

dc.contributor.authorVlachos, T.en
dc.date.accessioned2015-11-24T17:25:23Z
dc.date.available2015-11-24T17:25:23Z
dc.identifier.issn0232-704X-
dc.identifier.urihttps://olympias.lib.uoi.gr/jspui/handle/123456789/13033
dc.rightsDefault Licence-
dc.subjectcurvature ellipseen
dc.subjecteccentricityen
dc.subjectminimal surfaceen
dc.subjectricci conditionen
dc.subjectspace-formsen
dc.subjectimmersionsen
dc.subjectsnen
dc.titleMinimal surfaces in a sphere and the Ricci conditionen
heal.abstractIn this paper we deal with minimal surfaces in a sphere which are locally isometric to a minimal surface in S-3. We prove that a minimal surface in a sphere is locally isometric to a minimal surface in S-3 if the curvature ellipse has constant and positive eccentricity. Moreover, we prove the following rigidity result: a compact minimal surface M in S-m, m less than or equal to 6, cannot be locally isometric to a minimal surface in S-3 unless M already lies in S-3 or M is flat and lies in S-5 Mathematics Subject Classifications (1991): 53A10.en
heal.accesscampus-
heal.fullTextAvailabilityTRUE-
heal.identifier.primaryDoi 10.1023/A:1006552201857-
heal.identifier.secondary<Go to ISI>://000078941600003-
heal.identifier.secondaryhttp://link.springer.com/content/pdf/10.1023%2FA%3A1006552201857.pdf-
heal.journalNameAnnals of Global Analysis and Geometryen
heal.journalTypepeer reviewed-
heal.languageen-
heal.publicationDate1999-
heal.publisherSpringer Verlag (Germany)en
heal.recordProviderΠανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μαθηματικώνel
heal.typejournalArticle-
heal.type.elΆρθρο Περιοδικούel
heal.type.enJournal articleen

Αρχεία

Φάκελος/Πακέτο αδειών

Προβολή: 1 - 1 of 1
Φόρτωση...
Μικρογραφία εικόνας
Ονομα:
license.txt
Μέγεθος:
1.74 KB
Μορφότυπο:
Item-specific license agreed upon to submission
Περιγραφή: