Minimal surfaces in a sphere and the Ricci condition
dc.contributor.author | Vlachos, T. | en |
dc.date.accessioned | 2015-11-24T17:25:23Z | |
dc.date.available | 2015-11-24T17:25:23Z | |
dc.identifier.issn | 0232-704X | - |
dc.identifier.uri | https://olympias.lib.uoi.gr/jspui/handle/123456789/13033 | |
dc.rights | Default Licence | - |
dc.subject | curvature ellipse | en |
dc.subject | eccentricity | en |
dc.subject | minimal surface | en |
dc.subject | ricci condition | en |
dc.subject | space-forms | en |
dc.subject | immersions | en |
dc.subject | sn | en |
dc.title | Minimal surfaces in a sphere and the Ricci condition | en |
heal.abstract | In this paper we deal with minimal surfaces in a sphere which are locally isometric to a minimal surface in S-3. We prove that a minimal surface in a sphere is locally isometric to a minimal surface in S-3 if the curvature ellipse has constant and positive eccentricity. Moreover, we prove the following rigidity result: a compact minimal surface M in S-m, m less than or equal to 6, cannot be locally isometric to a minimal surface in S-3 unless M already lies in S-3 or M is flat and lies in S-5 Mathematics Subject Classifications (1991): 53A10. | en |
heal.access | campus | - |
heal.fullTextAvailability | TRUE | - |
heal.identifier.primary | Doi 10.1023/A:1006552201857 | - |
heal.identifier.secondary | <Go to ISI>://000078941600003 | - |
heal.identifier.secondary | http://link.springer.com/content/pdf/10.1023%2FA%3A1006552201857.pdf | - |
heal.journalName | Annals of Global Analysis and Geometry | en |
heal.journalType | peer reviewed | - |
heal.language | en | - |
heal.publicationDate | 1999 | - |
heal.publisher | Springer Verlag (Germany) | en |
heal.recordProvider | Πανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μαθηματικών | el |
heal.type | journalArticle | - |
heal.type.el | Άρθρο Περιοδικού | el |
heal.type.en | Journal article | en |
Αρχεία
Φάκελος/Πακέτο αδειών
1 - 1 of 1
Φόρτωση...
- Ονομα:
- license.txt
- Μέγεθος:
- 1.74 KB
- Μορφότυπο:
- Item-specific license agreed upon to submission
- Περιγραφή: