An automated method for gridding and clustering-based segmentation of cDNA microarray images

dc.contributor.authorGiannakeas, N.en
dc.contributor.authorFotiadis, D. I.en
dc.date.accessioned2015-11-24T17:31:26Z
dc.date.available2015-11-24T17:31:26Z
dc.identifier.issn0895-6111-
dc.identifier.urihttps://olympias.lib.uoi.gr/jspui/handle/123456789/13584
dc.rightsDefault Licence-
dc.subjectmicroarray image processingen
dc.subjectgriddingen
dc.subjectsegmentationen
dc.subjectk-meansen
dc.subjectfuzzy c meansen
dc.subjectDNA microarrayen
dc.subjectgene-expressionen
dc.titleAn automated method for gridding and clustering-based segmentation of cDNA microarray imagesen
heal.abstractMicroarrays are widely used to quantify gene expression levels. Microarray image analysis is one of the tools, which are necessary when dealing with vast amounts of biological data. In this work we propose a new method for the automated analysis of microarray images. The proposed method consists of two stages: gridding and segmentation. Initially, the microarray images are preprocessed using template matching, and block and spot finding takes place. Then, the non-expressed spots are detected and a grid is fit on the image using a Voronoi diagram. In the segmentation stage, K-means and Fuzzy C means (FCM) Clustering are employed. The proposed method was evaluated using images from the Stanford Microarray Database (SMD). The results that are presented in the segmentation stage show the efficiency of our Fuzzy C means-based work compared to the two already developed K-means-based methods. The proposed method can handle images with artefacts and it is fully automated. (C) 2008 Elsevier Ltd. All rights reserved.en
heal.accesscampus-
heal.fullTextAvailabilityTRUE-
heal.identifier.primaryDOI 10.1016/j.compmedimag.2008.10.003-
heal.identifier.secondary<Go to ISI>://000262692200006-
heal.identifier.secondaryhttp://ac.els-cdn.com/S0895611108001018/1-s2.0-S0895611108001018-main.pdf?_tid=e492477cb5a849ab7666b7644698c4ec&acdnat=1339757179_18fa408075624e9a45cd06f474c31b88-
heal.journalNameComputerized Medical Imaging and Graphicsen
heal.journalTypepeer reviewed-
heal.languageen-
heal.publicationDate2009-
heal.publisherElsevieren
heal.recordProviderΠανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μηχανικών Επιστήμης Υλικώνel
heal.typejournalArticle-
heal.type.elΆρθρο Περιοδικούel
heal.type.enJournal articleen

Αρχεία

Φάκελος/Πακέτο αδειών

Προβολή: 1 - 1 of 1
Φόρτωση...
Μικρογραφία εικόνας
Ονομα:
license.txt
Μέγεθος:
1.74 KB
Μορφότυπο:
Item-specific license agreed upon to submission
Περιγραφή: