On the inner curvature of the second fundamental form of helicoidal surfaces

dc.contributor.authorBaikoussis, C.en
dc.contributor.authorKoufogiorgos, T.en
dc.date.accessioned2015-11-24T17:26:45Z
dc.date.available2015-11-24T17:26:45Z
dc.identifier.issn0003-889X-
dc.identifier.urihttps://olympias.lib.uoi.gr/jspui/handle/123456789/13249
dc.rightsDefault Licence-
dc.titleOn the inner curvature of the second fundamental form of helicoidal surfacesen
heal.abstractLet M be a helicoidal surface in E(3), free of points of vanishing Gaussian curvature. Let H be the mean curvature and K-II the curvature of the second fundamental form. In this note it is shown that the helicoidal surfaces satisfying K-II = H are locally characterized by constancy of the ratio of the principal curvatures. Moreover it is proved that these helicoidal surfaces are determined by a first order differential equation.en
heal.accesscampus-
heal.fullTextAvailabilityTRUE-
heal.identifier.primarydoi:10.1007/s000130050046-
heal.identifier.secondary<Go to ISI>://A1997WL35300011-
heal.identifier.secondaryhttp://www.springerlink.com/content/03qaklnd61ehn0f2/fulltext.pdf-
heal.journalNameArchiv Der Mathematiken
heal.journalTypepeer reviewed-
heal.languageen-
heal.publicationDate1997-
heal.publisherSpringer Verlag (Germany)en
heal.recordProviderΠανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μαθηματικώνel
heal.typejournalArticle-
heal.type.elΆρθρο Περιοδικούel
heal.type.enJournal articleen

Files

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.74 KB
Format:
Item-specific license agreed upon to submission
Description: