Oscillation criteria for delay equations
| dc.contributor.author | Kon, M. | en |
| dc.contributor.author | Sficas, Y. G. | en |
| dc.contributor.author | Stavroulakis, I. P. | en |
| dc.date.accessioned | 2015-11-24T17:27:11Z | |
| dc.date.available | 2015-11-24T17:27:11Z | |
| dc.identifier.issn | 0002-9939 | - |
| dc.identifier.uri | https://olympias.lib.uoi.gr/jspui/handle/123456789/13326 | |
| dc.rights | Default Licence | - |
| dc.subject | oscillation | en |
| dc.subject | delay differential equations | en |
| dc.subject | differential-equations | en |
| dc.title | Oscillation criteria for delay equations | en |
| heal.abstract | This paper is concerned with the oscillatory behavior of first-order delay differential equations of the form (1) x'(t) + p(t)x(tau(t)) = 0, t greater than or equal to t(0), where p, tau is an element of C([t(0), infinity), R+), R+ = [0, infinity), tau(t) is non-decreasing, tau(t) < t for t greater than or equal to t(0) and lim(t-->infinity) tau(t) = infinity. Let the numbers k and L be defined by [GRAPHICS] It is proved here that when L < 1 and 0 < k less than or equal to 1/e all solutions of Eq. (1) oscillate in several cases in which the condition L > 2k + 2/lambda(1) -1 holds, where lambda(1) is the smaller root of the equation lambda = e(k lambda). | en |
| heal.access | campus | - |
| heal.fullTextAvailability | TRUE | - |
| heal.identifier.secondary | <Go to ISI>://000088390400023 | - |
| heal.journalName | Proceedings of the American Mathematical Society | en |
| heal.journalType | peer reviewed | - |
| heal.language | en | - |
| heal.publicationDate | 2000 | - |
| heal.publisher | American Mathematical Society | en |
| heal.recordProvider | Πανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μαθηματικών | el |
| heal.type | journalArticle | - |
| heal.type.el | Άρθρο Περιοδικού | el |
| heal.type.en | Journal article | en |
Αρχεία
Φάκελος/Πακέτο αδειών
1 - 1 of 1
Φόρτωση...
- Ονομα:
- license.txt
- Μέγεθος:
- 1.74 KB
- Μορφότυπο:
- Item-specific license agreed upon to submission
- Περιγραφή:
