Oscillation criteria for delay equations

dc.contributor.authorKon, M.en
dc.contributor.authorSficas, Y. G.en
dc.contributor.authorStavroulakis, I. P.en
dc.date.accessioned2015-11-24T17:27:11Z
dc.date.available2015-11-24T17:27:11Z
dc.identifier.issn0002-9939-
dc.identifier.urihttps://olympias.lib.uoi.gr/jspui/handle/123456789/13326
dc.rightsDefault Licence-
dc.subjectoscillationen
dc.subjectdelay differential equationsen
dc.subjectdifferential-equationsen
dc.titleOscillation criteria for delay equationsen
heal.abstractThis paper is concerned with the oscillatory behavior of first-order delay differential equations of the form (1) x'(t) + p(t)x(tau(t)) = 0, t greater than or equal to t(0), where p, tau is an element of C([t(0), infinity), R+), R+ = [0, infinity), tau(t) is non-decreasing, tau(t) < t for t greater than or equal to t(0) and lim(t-->infinity) tau(t) = infinity. Let the numbers k and L be defined by [GRAPHICS] It is proved here that when L < 1 and 0 < k less than or equal to 1/e all solutions of Eq. (1) oscillate in several cases in which the condition L > 2k + 2/lambda(1) -1 holds, where lambda(1) is the smaller root of the equation lambda = e(k lambda).en
heal.accesscampus-
heal.fullTextAvailabilityTRUE-
heal.identifier.secondary<Go to ISI>://000088390400023-
heal.journalNameProceedings of the American Mathematical Societyen
heal.journalTypepeer reviewed-
heal.languageen-
heal.publicationDate2000-
heal.publisherAmerican Mathematical Societyen
heal.recordProviderΠανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μαθηματικώνel
heal.typejournalArticle-
heal.type.elΆρθρο Περιοδικούel
heal.type.enJournal articleen

Αρχεία

Φάκελος/Πακέτο αδειών

Προβολή: 1 - 1 of 1
Φόρτωση...
Μικρογραφία εικόνας
Ονομα:
license.txt
Μέγεθος:
1.74 KB
Μορφότυπο:
Item-specific license agreed upon to submission
Περιγραφή: