Hereditarily indecomposable Banach algebras of diagonal operators
dc.contributor.author | Argyros, S. A. | en |
dc.contributor.author | Deliyanni, I. | en |
dc.contributor.author | Tolias, A. G. | en |
dc.date.accessioned | 2015-11-24T17:24:29Z | |
dc.date.available | 2015-11-24T17:24:29Z | |
dc.identifier.issn | 0021-2172 | - |
dc.identifier.uri | https://olympias.lib.uoi.gr/jspui/handle/123456789/12904 | |
dc.rights | Default Licence | - |
dc.subject | noncompact operators | en |
dc.subject | spaces | en |
dc.subject | l1 | en |
dc.title | Hereditarily indecomposable Banach algebras of diagonal operators | en |
heal.abstract | We provide a characterization of the Banach spaces X with a Schauder basis (e(n))(n is an element of N) which have the property that the dual space X* is naturally isomorphic to the space L(diag)(X) of diagonal operators with respect to (e(n))(n is an element of N). We also construct a Hereditarily Indecomposable Banach space X(D) with a Schauder basis (e(n))(n is an element of N) such that X(D)* is isometric to L(diag)(X(D)) with these Banach algebras being Hereditarily Indecomposable. Finally, we show that every T is an element of L(diag)(X(D)) is of the form T = lambda I + K, where K is a compact operator. | en |
heal.access | campus | - |
heal.fullTextAvailability | TRUE | - |
heal.identifier.primary | DOI 10.1007/s11856-011-0004-x | - |
heal.identifier.secondary | <Go to ISI>://000287757400004 | - |
heal.identifier.secondary | http://www.springerlink.com/content/g34667n614v70101/fulltext.pdf | - |
heal.journalName | Israel Journal of Mathematics | en |
heal.journalType | peer reviewed | - |
heal.language | en | - |
heal.publicationDate | 2011 | - |
heal.publisher | Springer Verlag (Germany) | en |
heal.recordProvider | Πανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μαθηματικών | el |
heal.type | journalArticle | - |
heal.type.el | Άρθρο Περιοδικού | el |
heal.type.en | Journal article | en |
Αρχεία
Φάκελος/Πακέτο αδειών
1 - 1 of 1
Φόρτωση...
- Ονομα:
- license.txt
- Μέγεθος:
- 1.74 KB
- Μορφότυπο:
- Item-specific license agreed upon to submission
- Περιγραφή: