Sharp conditions for nonoscillation of functional equations

dc.contributor.authorShen, J. H.en
dc.contributor.authorStavroulakis, I. P.en
dc.date.accessioned2015-11-24T17:27:58Z
dc.date.available2015-11-24T17:27:58Z
dc.identifier.issn0019-5588-
dc.identifier.urihttps://olympias.lib.uoi.gr/jspui/handle/123456789/13481
dc.rightsDefault Licence-
dc.subjectnonoscillationen
dc.subjectoscillationen
dc.subjectfunctional equationen
dc.subjectdifference-equationsen
dc.subjectoscillationen
dc.subjectargumentsen
dc.titleSharp conditions for nonoscillation of functional equationsen
heal.abstractConsider the second order linear functional equation' x (g (t) = P(t) x (t) + Q (t) x (g(2) (t)), where P, Q is an element of C([0, infinity),[0, infinity)), g is an element of C[0, infinity),R), g(t) is increasing, g(t) > t or (t) <. t and g (t) --> infinity as t --> infinity and the linear functional equation x (t) -p (t - tau) + q(t) x (t - sigma) = 0, where p, tau, sigma is an element of (0, infinity), q (t) is an element of C ([0, infinity), [0, infinity)). We establish the following "sharp" nonoscillation criteria for eq. and eq. Theorem 1 - If Q (t) P (g (t)) less than or equal to 1/4 for large t, then eq. (*) has a nonoscillatory solution. Theorem 2 If sigma > tau and for large t p(-sigma/tau) . q(t) less than or equal to (sigma/sigma-tau)(sigma/r) . (tau/sigma - tau)(-1) then eq. (**) has a nonoscillatory solution.en
heal.accesscampus-
heal.fullTextAvailabilityTRUE-
heal.identifier.secondary<Go to ISI>://000175573700010-
heal.journalNameIndian Journal of Pure & Applied Mathematicsen
heal.journalTypepeer reviewed-
heal.languageen-
heal.publicationDate2002-
heal.publisherSpringer Verlag (Germany)en
heal.recordProviderΠανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μαθηματικώνel
heal.typejournalArticle-
heal.type.elΆρθρο Περιοδικούel
heal.type.enJournal articleen

Αρχεία

Φάκελος/Πακέτο αδειών

Προβολή: 1 - 1 of 1
Φόρτωση...
Μικρογραφία εικόνας
Ονομα:
license.txt
Μέγεθος:
1.74 KB
Μορφότυπο:
Item-specific license agreed upon to submission
Περιγραφή: