Incremental mixture learning for clustering discrete data
Φόρτωση...
Ημερομηνία
Συγγραφείς
Blekas, K.
Likas, A.
Τίτλος Εφημερίδας
Περιοδικό ISSN
Τίτλος τόμου
Εκδότης
Περίληψη
Τύπος
Είδος δημοσίευσης σε συνέδριο
Είδος περιοδικού
peer reviewed
Είδος εκπαιδευτικού υλικού
Όνομα συνεδρίου
Όνομα περιοδικού
Methods and Applications of Artificial Intelligence, Proceedings
Όνομα βιβλίου
Σειρά βιβλίου
Έκδοση βιβλίου
Συμπληρωματικός/δευτερεύων τίτλος
Περιγραφή
This paper elaborates on an efficient approach for clustering discrete data by incrementally building multinormal mixture models through likelihood maximization using the Expectation-Maximization (EM) algorithm. The method adds sequentially at each step a new multinomial component to a mixture model based on a combined scheme of global and local search in order to deal with the initialization problem of the EM algorithm. In the global search phase several initial values are examined for the parameters of the multinomial component. These values are selected from an appropriately defined set of initialization candidates. Two methods are proposed here to specify the elements of this set based on the agglomerative and the kd-tree clustering algorithms. We investigate the performance of the incremental learning technique on a synthetic and a real dataset and also provide comparative results with the standard EM-based multinomial mixture model.
Περιγραφή
Λέξεις-κλειδιά
networks
Θεματική κατηγορία
Παραπομπή
Σύνδεσμος
Γλώσσα
en
Εκδίδον τμήμα/τομέας
Όνομα επιβλέποντος
Εξεταστική επιτροπή
Γενική Περιγραφή / Σχόλια
Ίδρυμα και Σχολή/Τμήμα του υποβάλλοντος
Πανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μηχανικών Ηλεκτρονικών Υπολογιστών και Πληροφορικής