Incremental mixture learning for clustering discrete data

dc.contributor.authorBlekas, K.en
dc.contributor.authorLikas, A.en
dc.date.accessioned2015-11-24T17:00:36Z
dc.date.available2015-11-24T17:00:36Z
dc.identifier.issn0302-9743-
dc.identifier.urihttps://olympias.lib.uoi.gr/jspui/handle/123456789/10788
dc.rightsDefault Licence-
dc.subjectnetworksen
dc.titleIncremental mixture learning for clustering discrete dataen
heal.abstractThis paper elaborates on an efficient approach for clustering discrete data by incrementally building multinormal mixture models through likelihood maximization using the Expectation-Maximization (EM) algorithm. The method adds sequentially at each step a new multinomial component to a mixture model based on a combined scheme of global and local search in order to deal with the initialization problem of the EM algorithm. In the global search phase several initial values are examined for the parameters of the multinomial component. These values are selected from an appropriately defined set of initialization candidates. Two methods are proposed here to specify the elements of this set based on the agglomerative and the kd-tree clustering algorithms. We investigate the performance of the incremental learning technique on a synthetic and a real dataset and also provide comparative results with the standard EM-based multinomial mixture model.en
heal.accesscampus-
heal.fullTextAvailabilityTRUE-
heal.journalNameMethods and Applications of Artificial Intelligence, Proceedingsen
heal.journalTypepeer reviewed-
heal.languageen-
heal.publicationDate2004-
heal.recordProviderΠανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μηχανικών Ηλεκτρονικών Υπολογιστών και Πληροφορικήςel
heal.typejournalArticle-
heal.type.elΆρθρο Περιοδικούel
heal.type.enJournal articleen

Αρχεία

Φάκελος/Πακέτο αδειών

Προβολή: 1 - 1 of 1
Φόρτωση...
Μικρογραφία εικόνας
Ονομα:
license.txt
Μέγεθος:
1.74 KB
Μορφότυπο:
Item-specific license agreed upon to submission
Περιγραφή: