Automatic arrhythmia detection based on time and time-frequency analysis of heart rate variability

dc.contributor.authorTsipouras, M. G.en
dc.contributor.authorFotiadis, D. I.en
dc.date.accessioned2015-11-24T17:32:18Z
dc.date.available2015-11-24T17:32:18Z
dc.identifier.issn0169-2607-
dc.identifier.urihttps://olympias.lib.uoi.gr/jspui/handle/123456789/13707
dc.rightsDefault Licence-
dc.subjectarrhythmia detectionen
dc.subjectheart rate variabilityen
dc.subjecttime-frequency analysisen
dc.subjectthreatening cardiac-arrhythmiasen
dc.subjectpower spectrum analysisen
dc.subjectventricular-fibrillationen
dc.subjectneural-networksen
dc.subjectblood-pressureen
dc.subjectwavelet transformationen
dc.subjectcardiovascular controlen
dc.subjectsignalsen
dc.subjecttachycardiaen
dc.subjecttachyarrhythmiaen
dc.titleAutomatic arrhythmia detection based on time and time-frequency analysis of heart rate variabilityen
heal.abstractWe have developed an automatic arrhythmia detection system, which is based on heart rate features only. Initially, the RR interval duration signal is extracted from ECG recordings and segmented into small intervals. The analysis is based on both time and time-frequency (t-f) features. Time domain measurements are extracted and several combinations between the obtained features are used for the training of a set of neural networks. Short time Fourier transform and several time-frequency distributions (TFD) are used in the t-f analysis. The features obtained are used for the training of a set of neural networks, one for each distribution. The proposed approach is tested using the MIT-BIH arrhythmia database and satisfactory results are obtained for both sensitivity and specificity (87.5 and 89.5%, respectively, for time domain analysis and 90 and 93%, respectively, for t-f domain analysis). (C) 2003 Elsevier Ireland Ltd. All rights reserved.en
heal.accesscampus-
heal.fullTextAvailabilityTRUE-
heal.identifier.primaryDOI 10.1016/s0169-2607(03)00079-8-
heal.identifier.secondary<Go to ISI>://000220446800001-
heal.identifier.secondaryhttp://ac.els-cdn.com/S0169260703000798/1-s2.0-S0169260703000798-main.pdf?_tid=a4f551d106c7a80b395b409701ee83e3&acdnat=1339758735_a3437d7b1cb21730b59f6b380740ee4e-
heal.journalNameComput Methods Programs Biomeden
heal.journalTypepeer reviewed-
heal.languageen-
heal.publicationDate2004-
heal.publisherElsevieren
heal.recordProviderΠανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μηχανικών Επιστήμης Υλικώνel
heal.typejournalArticle-
heal.type.elΆρθρο Περιοδικούel
heal.type.enJournal articleen

Αρχεία

Φάκελος/Πακέτο αδειών

Προβολή: 1 - 1 of 1
Φόρτωση...
Μικρογραφία εικόνας
Ονομα:
license.txt
Μέγεθος:
1.74 KB
Μορφότυπο:
Item-specific license agreed upon to submission
Περιγραφή: