Self-transform operators
dc.contributor.author | McCallum, M. S. | en |
dc.contributor.author | Horikis, T. P. | en |
dc.date.accessioned | 2015-11-24T17:27:55Z | |
dc.date.available | 2015-11-24T17:27:55Z | |
dc.identifier.issn | 0305-4470 | - |
dc.identifier.uri | https://olympias.lib.uoi.gr/jspui/handle/123456789/13473 | |
dc.rights | Default Licence | - |
dc.subject | fourier functions | en |
dc.subject | objects | en |
dc.title | Self-transform operators | en |
heal.abstract | The concept of self-Fourier functions, functions that equal their Fourier transform, is considered using differential operators. The goal is to analyse these functions and determine their properties without evaluating any Fourier, or any other type, transform integrals. Certain known results are generalized and the theory is extended to include integral and fractional-differential operators. Moreover, it is shown that the problem of defining these functions, in its original formulation, is equivalent to this method and in doing so, the concept of a Fourier eigenoperator is introduced. We also describe a procedure for applying this approach to general cyclic transforms. | en |
heal.access | campus | - |
heal.fullTextAvailability | TRUE | - |
heal.identifier.primary | Doi 10.1088/0305-4470/39/24/L02 | - |
heal.identifier.secondary | <Go to ISI>://000238554000002 | - |
heal.identifier.secondary | http://iopscience.iop.org/0305-4470/39/24/L02/pdf/0305-4470_39_24_L02.pdf | - |
heal.journalName | Journal of Physics a-Mathematical and General | en |
heal.journalType | peer reviewed | - |
heal.language | en | - |
heal.publicationDate | 2006 | - |
heal.publisher | Institute of Physics | en |
heal.recordProvider | Πανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μαθηματικών | el |
heal.type | journalArticle | - |
heal.type.el | Άρθρο Περιοδικού | el |
heal.type.en | Journal article | en |
Αρχεία
Φάκελος/Πακέτο αδειών
1 - 1 of 1
Φόρτωση...
- Ονομα:
- license.txt
- Μέγεθος:
- 1.74 KB
- Μορφότυπο:
- Item-specific license agreed upon to submission
- Περιγραφή: