A supervised method to assist the diagnosis and classification of the status of Alzheimer's disease using data from an fMRI experiment

dc.contributor.authorTripoliti, E. E.en
dc.contributor.authorFotiadis, D. I.en
dc.contributor.authorArgyropoulou, M.en
dc.date.accessioned2015-11-24T19:38:55Z
dc.date.available2015-11-24T19:38:55Z
dc.identifier.issn1557-170X-
dc.identifier.urihttps://olympias.lib.uoi.gr/jspui/handle/123456789/24196
dc.rightsDefault Licence-
dc.subjectAdolescenten
dc.subjectAdulten
dc.subjectAgeden
dc.subjectAged, 80 and overen
dc.subjectAlgorithmsen
dc.subjectAlzheimer Disease/*classification/*diagnosisen
dc.subjectDementia/classification/diagnosisen
dc.subjectDiagnosis, Computer-Assisted/*methodsen
dc.subjectFemaleen
dc.subjectHumansen
dc.subjectLinear Modelsen
dc.subjectMagnetic Resonance Imaging/*methodsen
dc.subjectMaleen
dc.subjectNormal Distributionen
dc.subject*Signal Processing, Computer-Assisteden
dc.titleA supervised method to assist the diagnosis and classification of the status of Alzheimer's disease using data from an fMRI experimenten
heal.abstractThe aim of this work is the development of a method to assist the diagnosis and classification of the status of Alzheimer's Disease (AD) using information that can be extracted from fMRI. The method consists of five stages: a) preprocessing of fMRI data to remove non-task related variability, b) modeling BOLD response depending on stimulus, c) feature extraction from fMRI data, d) feature selection and e) classification using the Random Forests (RF) algorithm. The proposed method is evaluated using data from 41 subjects (14 young adults, 14 non demented older adults and 13 demented older adults.en
heal.accesscampus-
heal.fullTextAvailabilityTRUE-
heal.identifier.primary10.1109/IEMBS.2008.4650191-
heal.identifier.secondaryhttp://www.ncbi.nlm.nih.gov/pubmed/19163694-
heal.identifier.secondaryhttp://ieeexplore.ieee.org/ielx5/4636107/4649055/04650191.pdf?tp=&arnumber=4650191&isnumber=4649055-
heal.journalNameConf Proc IEEE Eng Med Biol Socen
heal.journalTypepeer-reviewed-
heal.languageen-
heal.publicationDate2008-
heal.recordProviderΠανεπιστήμιο Ιωαννίνων. Σχολή Επιστημών Υγείας. Τμήμα Ιατρικήςel
heal.typejournalArticle-
heal.type.elΆρθρο Περιοδικούel
heal.type.enJournal articleen

Αρχεία

Φάκελος/Πακέτο αδειών

Προβολή: 1 - 1 of 1
Φόρτωση...
Μικρογραφία εικόνας
Ονομα:
license.txt
Μέγεθος:
1.74 KB
Μορφότυπο:
Item-specific license agreed upon to submission
Περιγραφή: