Self-Fourier functions and self-Fourier operators
Φόρτωση...
Ημερομηνία
Συγγραφείς
Horikis, T. P.
McCallum, M. S.
Τίτλος Εφημερίδας
Περιοδικό ISSN
Τίτλος τόμου
Εκδότης
Περίληψη
Τύπος
Είδος δημοσίευσης σε συνέδριο
Είδος περιοδικού
peer reviewed
Είδος εκπαιδευτικού υλικού
Όνομα συνεδρίου
Όνομα περιοδικού
Journal of the Optical Society of America a-Optics Image Science and Vision
Όνομα βιβλίου
Σειρά βιβλίου
Έκδοση βιβλίου
Συμπληρωματικός/δευτερεύων τίτλος
Περιγραφή
The concept of self-Fourier functions, i.e., functions that equal their Fourier transform, is almost always associated with specific functions, the most well known being the Gaussian and the Dirac delta comb. We show that there exists an infinite number of distinct families of these functions, and we provide an algorithm for both generating and characterizing their distinct classes. This formalism allows us to show the existence of these families of functions without actually evaluating any Fourier or other transform-type integrals, a task often challenging and frequently not even possible. (c) 2006 Optical Society of America.
Περιγραφή
Λέξεις-κλειδιά
transform objects
Θεματική κατηγορία
Παραπομπή
Σύνδεσμος
<Go to ISI>://000236300900009
Γλώσσα
en
Εκδίδον τμήμα/τομέας
Όνομα επιβλέποντος
Εξεταστική επιτροπή
Γενική Περιγραφή / Σχόλια
Ίδρυμα και Σχολή/Τμήμα του υποβάλλοντος
Πανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μαθηματικών