Self-Fourier functions and self-Fourier operators

Φόρτωση...
Μικρογραφία εικόνας

Ημερομηνία

Συγγραφείς

Horikis, T. P.
McCallum, M. S.

Τίτλος Εφημερίδας

Περιοδικό ISSN

Τίτλος τόμου

Εκδότης

Περίληψη

Τύπος

Είδος δημοσίευσης σε συνέδριο

Είδος περιοδικού

peer reviewed

Είδος εκπαιδευτικού υλικού

Όνομα συνεδρίου

Όνομα περιοδικού

Journal of the Optical Society of America a-Optics Image Science and Vision

Όνομα βιβλίου

Σειρά βιβλίου

Έκδοση βιβλίου

Συμπληρωματικός/δευτερεύων τίτλος

Περιγραφή

The concept of self-Fourier functions, i.e., functions that equal their Fourier transform, is almost always associated with specific functions, the most well known being the Gaussian and the Dirac delta comb. We show that there exists an infinite number of distinct families of these functions, and we provide an algorithm for both generating and characterizing their distinct classes. This formalism allows us to show the existence of these families of functions without actually evaluating any Fourier or other transform-type integrals, a task often challenging and frequently not even possible. (c) 2006 Optical Society of America.

Περιγραφή

Λέξεις-κλειδιά

transform objects

Θεματική κατηγορία

Παραπομπή

Σύνδεσμος

<Go to ISI>://000236300900009

Γλώσσα

en

Εκδίδον τμήμα/τομέας

Όνομα επιβλέποντος

Εξεταστική επιτροπή

Γενική Περιγραφή / Σχόλια

Ίδρυμα και Σχολή/Τμήμα του υποβάλλοντος

Πανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μαθηματικών

Πίνακας περιεχομένων

Χορηγός

Βιβλιογραφική αναφορά

Ονόματα συντελεστών

Αριθμός σελίδων

Λεπτομέρειες μαθήματος

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced