Self-Fourier functions and self-Fourier operators

dc.contributor.authorHorikis, T. P.en
dc.contributor.authorMcCallum, M. S.en
dc.date.accessioned2015-11-24T17:27:55Z
dc.date.available2015-11-24T17:27:55Z
dc.identifier.issn1084-7529-
dc.identifier.urihttps://olympias.lib.uoi.gr/jspui/handle/123456789/13471
dc.rightsDefault Licence-
dc.subjecttransform objectsen
dc.titleSelf-Fourier functions and self-Fourier operatorsen
heal.abstractThe concept of self-Fourier functions, i.e., functions that equal their Fourier transform, is almost always associated with specific functions, the most well known being the Gaussian and the Dirac delta comb. We show that there exists an infinite number of distinct families of these functions, and we provide an algorithm for both generating and characterizing their distinct classes. This formalism allows us to show the existence of these families of functions without actually evaluating any Fourier or other transform-type integrals, a task often challenging and frequently not even possible. (c) 2006 Optical Society of America.en
heal.accesscampus-
heal.fullTextAvailabilityTRUE-
heal.identifier.secondary<Go to ISI>://000236300900009-
heal.journalNameJournal of the Optical Society of America a-Optics Image Science and Visionen
heal.journalTypepeer reviewed-
heal.languageen-
heal.publicationDate2006-
heal.recordProviderΠανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μαθηματικώνel
heal.typejournalArticle-
heal.type.elΆρθρο Περιοδικούel
heal.type.enJournal articleen

Αρχεία

Φάκελος/Πακέτο αδειών

Προβολή: 1 - 1 of 1
Φόρτωση...
Μικρογραφία εικόνας
Ονομα:
license.txt
Μέγεθος:
1.74 KB
Μορφότυπο:
Item-specific license agreed upon to submission
Περιγραφή: