Optimal order a posteriori error estimates for a class of Runge-Kutta and Galerkin methods

dc.contributor.authorAkrivis, G.en
dc.contributor.authorMakridakis, C.en
dc.contributor.authorNochetto, R. H.en
dc.date.accessioned2015-11-24T17:01:55Z
dc.date.available2015-11-24T17:01:55Z
dc.identifier.issn0029-599X-
dc.identifier.urihttps://olympias.lib.uoi.gr/jspui/handle/123456789/10998
dc.rightsDefault Licence-
dc.subjectfinite-element methodsen
dc.subjectcrank-nicolson methoden
dc.subjectparabolic equationsen
dc.subjecttimeen
dc.titleOptimal order a posteriori error estimates for a class of Runge-Kutta and Galerkin methodsen
heal.abstractWe derive a posteriori error estimates, which exhibit optimal global order, for a class of time stepping methods of any order that include Runge-Kutta Collocation (RK-C) methods and the continuous Galerkin (cG) method for linear and nonlinear stiff ODEs and parabolic PDEs. The key ingredients in deriving these bounds are appropriate one-degree higher continuous reconstructions of the approximate solutions and pointwise error representations. The reconstructions are based on rather general orthogonality properties and lead to upper and lower bounds for the error regardless of the time-step; they do not hinge on asymptotics.en
heal.accesscampus-
heal.fullTextAvailabilityTRUE-
heal.identifier.primaryDOI 10.1007/s00211-009-0254-2-
heal.journalNameNumerische Mathematiken
heal.journalTypepeer reviewed-
heal.languageen-
heal.publicationDate2009-
heal.recordProviderΠανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μηχανικών Ηλεκτρονικών Υπολογιστών και Πληροφορικήςel
heal.typejournalArticle-
heal.type.elΆρθρο Περιοδικούel
heal.type.enJournal articleen

Αρχεία

Φάκελος/Πακέτο αδειών

Προβολή: 1 - 1 of 1
Φόρτωση...
Μικρογραφία εικόνας
Ονομα:
license.txt
Μέγεθος:
1.74 KB
Μορφότυπο:
Item-specific license agreed upon to submission
Περιγραφή: