Reachability and Holdability of Nonnegative States

dc.contributor.authorNoutsos, D.en
dc.contributor.authorTsatsomeros, M. J.en
dc.date.accessioned2015-11-24T17:27:47Z
dc.date.available2015-11-24T17:27:47Z
dc.identifier.issn0895-4798-
dc.identifier.urihttps://olympias.lib.uoi.gr/jspui/handle/123456789/13447
dc.rightsDefault Licence-
dc.subjecteventually nonnegative matrixen
dc.subjectexponentially nonnegative matrixen
dc.subjectpoint of non-negative potentialen
dc.subjectperron-frobeniusen
dc.subjectmetzler matrixen
dc.subjectconvex coneen
dc.subjectmatricesen
dc.titleReachability and Holdability of Nonnegative Statesen
heal.abstractLinear differential systems. x(t) = Ax(t) (A is an element of R(nxn), x(0) = x(0) is an element of R(n), t >= 0) whose solutions become and remain nonnegative are studied. It is shown that the eigenvalue of A furthest to the right must be real and must possess nonnegative right and left eigenvectors. Moreover, for some a >= 0, A + aI must be eventually nonnegative, that is, its powers must become and remain entrywise nonnegative. Initial conditions x(0) that result in nonnegative states x(t) infinite time are shown to form a convex cone that is related to the matrix exponential e(tA) and its eventual nonnegativity.en
heal.accesscampus-
heal.fullTextAvailabilityTRUE-
heal.identifier.primaryDoi 10.1137/070693850-
heal.identifier.secondary<Go to ISI>://000259955600015-
heal.journalNameSiam Journal on Matrix Analysis and Applicationsen
heal.journalTypepeer reviewed-
heal.languageen-
heal.publicationDate2008-
heal.publisherSociety for Industrial and Applied Mathematicsen
heal.recordProviderΠανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μαθηματικώνel
heal.typejournalArticle-
heal.type.elΆρθρο Περιοδικούel
heal.type.enJournal articleen

Αρχεία

Πρωτότυπος φάκελος/πακέτο

Προβολή: 1 - 1 of 1
Φόρτωση...
Μικρογραφία εικόνας
Ονομα:
noutsos-2008-Reachability and Holdability .pdf
Μέγεθος:
189.34 KB
Μορφότυπο:
Adobe Portable Document Format

Φάκελος/Πακέτο αδειών

Προβολή: 1 - 1 of 1
Φόρτωση...
Μικρογραφία εικόνας
Ονομα:
license.txt
Μέγεθος:
1.74 KB
Μορφότυπο:
Item-specific license agreed upon to submission
Περιγραφή: