On Perron-Frobenius property of matrices having some negative entries
dc.contributor.author | Noutsos, D. | en |
dc.date.accessioned | 2015-11-24T17:26:19Z | |
dc.date.available | 2015-11-24T17:26:19Z | |
dc.identifier.issn | 0024-3795 | - |
dc.identifier.uri | https://olympias.lib.uoi.gr/jspui/handle/123456789/13182 | |
dc.rights | Default Licence | - |
dc.subject | perron-frobenius theorem | en |
dc.subject | nonnegative matrices | en |
dc.subject | perron-frobenius splitting | en |
dc.subject | nonnegative matrices | en |
dc.subject | comparison-theorems | en |
dc.subject | splittings | en |
dc.title | On Perron-Frobenius property of matrices having some negative entries | en |
heal.abstract | We extend the theory of nonnegative matrices to the matrices that have some negative entries. We present and prove some properties which give us information, when a matrix possesses a Perron-Frobenius eigenpair. We apply also this theory by proposing the Perron-Frobenius splitting for the solution of the linear system Ax = b by classical iterative methods. Perron-Frobenius splittings constitute an extension of the well known regular splittings, weak regular splittings and nonnegative splittings. Convergence and comparison properties are given and proved. (c) 2005 Elsevier Inc. All rights reserved. | en |
heal.access | campus | - |
heal.fullTextAvailability | TRUE | - |
heal.identifier.primary | DOI 10.1016/j.laa.2005.06.037 | - |
heal.identifier.secondary | <Go to ISI>://000233945200003 | - |
heal.journalName | Linear Algebra and Its Applications | en |
heal.journalType | peer reviewed | - |
heal.language | en | - |
heal.publicationDate | 2006 | - |
heal.publisher | Elsevier | en |
heal.recordProvider | Πανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μαθηματικών | el |
heal.type | journalArticle | - |
heal.type.el | Άρθρο Περιοδικού | el |
heal.type.en | Journal article | en |
Αρχεία
Φάκελος/Πακέτο αδειών
1 - 1 of 1
Φόρτωση...
- Ονομα:
- license.txt
- Μέγεθος:
- 1.74 KB
- Μορφότυπο:
- Item-specific license agreed upon to submission
- Περιγραφή: