Quantum chemical study of the Si-C bond photodissociation in benzylsilane derivatives: a specific 'excited-state' silicon effect

dc.contributor.authorBudyka, M. F.en
dc.contributor.authorZyubina, T. S.en
dc.contributor.authorZarkadis, A. K.en
dc.date.accessioned2015-11-24T16:45:51Z
dc.date.available2015-11-24T16:45:51Z
dc.identifier.issn0166-1280-
dc.identifier.urihttps://olympias.lib.uoi.gr/jspui/handle/123456789/8993
dc.rightsDefault Licence-
dc.subjectpm3en
dc.subjectb3lypen
dc.subjectbenzylsilane derivativesen
dc.subjecttriplet excited stateen
dc.subjectphotodissociationen
dc.subjectelectron-transferen
dc.subjectmethyl-methacrylateen
dc.subjectflash-photolysisen
dc.subjectcarbenium ionsen
dc.subjectbeta-positionen
dc.subjectmechanismen
dc.subjectcleavageen
dc.subjectbenzyltrimethylsilaneen
dc.subjectradicalsen
dc.subjectcationen
dc.titleQuantum chemical study of the Si-C bond photodissociation in benzylsilane derivatives: a specific 'excited-state' silicon effecten
heal.abstractStructure and properties of the ground (S-0) and lowest excited triplet (T-1) states of benzylsilane derivatives bearing the benzophenone chromophore group, p-PhCO-C6H4-CR"R"'-SiR'(3) (R', R", R"' = H, H, H; Me, H, H; Me, H, Me; Me, Me, Me; Me, H, Ph; Me, Me, Ph; Me, Ph, Ph), were calculated using the semiempirical PM3 method. The bond dissociation energy (BDE) of the Si-C bond in the S-0 state and the heat of the bond dissociation reaction (DeltaH(r)) in the T-1 state were found to decrease with increasing substitution at silicon and/or benzylic carbon atom. There exists a straight-line dependence between the BDE and DeltaH(r) values in the series of the compounds studied. Minimal energy paths for the 'heterobenzylic' Si-C bond dissociation in benzylsilane PhCH2-SiH3 and for the benzylic C-C bond dissociation in the carbon analogue ethylbenzene PhCH2-CH3 in T-1 states were calculated using PM3 and B3LYP/6-31G**. The activation energies obtained are 13.3 and 36.7 kcal/mol (PM3), and 6.3 and 19.6 kcal/mol (B3LYP/6-31G** with ZPE correction) for benzylsilane and ethylbenzene, respectively. Both methods predict much lower activation barrier for benzylsilane compared to ethylbenzene. The difference in activation energies explains the experimentally observed high quantum yields (up to 0.9) of the Si-C bond photodissociation in silicon derivatives of benzophenone as compared to the C-C bond photodissociation in the corresponding carbon analogues (quantum yields <0.17). (C) 2004 Elsevier B.V. All rights reserved.en
heal.accesscampus-
heal.fullTextAvailabilityTRUE-
heal.identifier.primaryDOI 10.1016/j.theochem.2003.08.121-
heal.identifier.secondary<Go to ISI>://000188943900001-
heal.identifier.secondaryhttp://ac.els-cdn.com/S016612800300753X/1-s2.0-S016612800300753X-main.pdf?_tid=ea248f14-356f-11e3-b2e3-00000aacb35f&acdnat=1381824233_c7611db23265bf3ee41152dfae16d724-
heal.journalNameJournal of Molecular Structure-Theochemen
heal.journalTypepeer reviewed-
heal.languageen-
heal.publicationDate2004-
heal.recordProviderΠανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Χημείαςel
heal.typejournalArticle-
heal.type.elΆρθρο Περιοδικούel
heal.type.enJournal articleen

Αρχεία

Φάκελος/Πακέτο αδειών

Προβολή: 1 - 1 of 1
Φόρτωση...
Μικρογραφία εικόνας
Ονομα:
license.txt
Μέγεθος:
1.74 KB
Μορφότυπο:
Item-specific license agreed upon to submission
Περιγραφή: