Discrimination of observations into one of two elliptic populations based on monotone training samples

Φόρτωση...
Μικρογραφία εικόνας

Ημερομηνία

Συγγραφείς

Batsidis, A.
Zografos, K.

Τίτλος Εφημερίδας

Περιοδικό ISSN

Τίτλος τόμου

Εκδότης

Springer Verlag (Germany)

Περίληψη

Τύπος

Είδος δημοσίευσης σε συνέδριο

Είδος περιοδικού

peer reviewed

Είδος εκπαιδευτικού υλικού

Όνομα συνεδρίου

Όνομα περιοδικού

Metrika

Όνομα βιβλίου

Σειρά βιβλίου

Έκδοση βιβλίου

Συμπληρωματικός/δευτερεύων τίτλος

Περιγραφή

In this paper we deal with the problem of classifying a p-dimensional random vector into one of two elliptically contoured populations with unknown and distinct mean vectors and a common, but unknown, scale matrix. The classification procedure is based on two-step monotone training samples, one from each population, with the same monotone pattern. Our aim is to extend the classification procedure, which proposed recently by Chung and Han (Ann Ins Stat Math 52:544-556, 2000). This procedure is a linear combination of two discriminant functions, one based on the complete samples and the other on the incomplete samples. The performance of the proposed classification rule is compared with the plug-in method, this means with the classification rule which arises if the unknown parameters are substituted, into the usual classification rule, by their estimators. In order to apply the plug-in method, the MLE of the location parameters and of the common scale matrix of g >= 2 elliptically contoured populations are analytically obtained on the basis of two-step monotone training samples.

Περιγραφή

Λέξεις-κλειδιά

monotone missing data, elliptically contoured distributions, estimation, discriminant analysis, error rate, multivariate t-distribution, multivariate t-model, missing values, covariance-matrix

Θεματική κατηγορία

Παραπομπή

Σύνδεσμος

<Go to ISI>://000240796900008

Γλώσσα

en

Εκδίδον τμήμα/τομέας

Όνομα επιβλέποντος

Εξεταστική επιτροπή

Γενική Περιγραφή / Σχόλια

Ίδρυμα και Σχολή/Τμήμα του υποβάλλοντος

Πανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μαθηματικών

Πίνακας περιεχομένων

Χορηγός

Βιβλιογραφική αναφορά

Ονόματα συντελεστών

Αριθμός σελίδων

Λεπτομέρειες μαθήματος

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced