Discrimination of observations into one of two elliptic populations based on monotone training samples

dc.contributor.authorBatsidis, A.en
dc.contributor.authorZografos, K.en
dc.date.accessioned2015-11-24T17:22:59Z
dc.date.available2015-11-24T17:22:59Z
dc.identifier.issn0026-1335-
dc.identifier.urihttps://olympias.lib.uoi.gr/jspui/handle/123456789/12688
dc.rightsDefault Licence-
dc.subjectmonotone missing dataen
dc.subjectelliptically contoured distributionsen
dc.subjectestimationen
dc.subjectdiscriminant analysisen
dc.subjecterror rateen
dc.subjectmultivariate t-distributionen
dc.subjectmultivariate t-modelen
dc.subjectmissing valuesen
dc.subjectcovariance-matrixen
dc.titleDiscrimination of observations into one of two elliptic populations based on monotone training samplesen
heal.abstractIn this paper we deal with the problem of classifying a p-dimensional random vector into one of two elliptically contoured populations with unknown and distinct mean vectors and a common, but unknown, scale matrix. The classification procedure is based on two-step monotone training samples, one from each population, with the same monotone pattern. Our aim is to extend the classification procedure, which proposed recently by Chung and Han (Ann Ins Stat Math 52:544-556, 2000). This procedure is a linear combination of two discriminant functions, one based on the complete samples and the other on the incomplete samples. The performance of the proposed classification rule is compared with the plug-in method, this means with the classification rule which arises if the unknown parameters are substituted, into the usual classification rule, by their estimators. In order to apply the plug-in method, the MLE of the location parameters and of the common scale matrix of g >= 2 elliptically contoured populations are analytically obtained on the basis of two-step monotone training samples.en
heal.accesscampus-
heal.fullTextAvailabilityTRUE-
heal.identifier.primaryDOI 10.1007/s00184-006-0046-y-
heal.identifier.secondary<Go to ISI>://000240796900008-
heal.journalNameMetrikaen
heal.journalTypepeer reviewed-
heal.languageen-
heal.publicationDate2006-
heal.publisherSpringer Verlag (Germany)en
heal.recordProviderΠανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μαθηματικώνel
heal.typejournalArticle-
heal.type.elΆρθρο Περιοδικούel
heal.type.enJournal articleen

Αρχεία

Φάκελος/Πακέτο αδειών

Προβολή: 1 - 1 of 1
Φόρτωση...
Μικρογραφία εικόνας
Ονομα:
license.txt
Μέγεθος:
1.74 KB
Μορφότυπο:
Item-specific license agreed upon to submission
Περιγραφή: