Group updates and multiscaling: An efficient neural network approach to combinatorial optimization

Φόρτωση...
Μικρογραφία εικόνας

Ημερομηνία

Συγγραφείς

Likas, A.
Stafylopatis, A.

Τίτλος Εφημερίδας

Περιοδικό ISSN

Τίτλος τόμου

Εκδότης

Περίληψη

Τύπος

Είδος δημοσίευσης σε συνέδριο

Είδος περιοδικού

peer reviewed

Είδος εκπαιδευτικού υλικού

Όνομα συνεδρίου

Όνομα περιοδικού

Ieee Transactions on Systems Man and Cybernetics Part B-Cybernetics

Όνομα βιβλίου

Σειρά βιβλίου

Έκδοση βιβλίου

Συμπληρωματικός/δευτερεύων τίτλος

Περιγραφή

A multiscale method is described in the context of binary Hopfield-type neural networks. The appropriateness of the proposed technique for solving several classes of optimization problems is established by means of the notion of group update which is introduced here and investigated in relation to the properties of multiscaling. The method has been tested in the solution of partitioning and covering problems, for which an original mapping to Hopfield-type neural networks has been developed, Experimental results indicate that the multiscale approach is very effective in exploring the state-space of the problem and providing feasible solutions of acceptable quality, while at the same it offers a significant acceleration.

Περιγραφή

Λέξεις-κλειδιά

boltzmann machines, approximation

Θεματική κατηγορία

Παραπομπή

Σύνδεσμος

Γλώσσα

en

Εκδίδον τμήμα/τομέας

Όνομα επιβλέποντος

Εξεταστική επιτροπή

Γενική Περιγραφή / Σχόλια

Ίδρυμα και Σχολή/Τμήμα του υποβάλλοντος

Πανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μηχανικών Ηλεκτρονικών Υπολογιστών και Πληροφορικής

Πίνακας περιεχομένων

Χορηγός

Βιβλιογραφική αναφορά

Ονόματα συντελεστών

Αριθμός σελίδων

Λεπτομέρειες μαθήματος

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced