Group updates and multiscaling: An efficient neural network approach to combinatorial optimization
dc.contributor.author | Likas, A. | en |
dc.contributor.author | Stafylopatis, A. | en |
dc.date.accessioned | 2015-11-24T17:02:50Z | |
dc.date.available | 2015-11-24T17:02:50Z | |
dc.identifier.issn | 1083-4419 | - |
dc.identifier.uri | https://olympias.lib.uoi.gr/jspui/handle/123456789/11099 | |
dc.rights | Default Licence | - |
dc.subject | boltzmann machines | en |
dc.subject | approximation | en |
dc.title | Group updates and multiscaling: An efficient neural network approach to combinatorial optimization | en |
heal.abstract | A multiscale method is described in the context of binary Hopfield-type neural networks. The appropriateness of the proposed technique for solving several classes of optimization problems is established by means of the notion of group update which is introduced here and investigated in relation to the properties of multiscaling. The method has been tested in the solution of partitioning and covering problems, for which an original mapping to Hopfield-type neural networks has been developed, Experimental results indicate that the multiscale approach is very effective in exploring the state-space of the problem and providing feasible solutions of acceptable quality, while at the same it offers a significant acceleration. | en |
heal.access | campus | - |
heal.fullTextAvailability | TRUE | - |
heal.journalName | Ieee Transactions on Systems Man and Cybernetics Part B-Cybernetics | en |
heal.journalType | peer reviewed | - |
heal.language | en | - |
heal.publicationDate | 1996 | - |
heal.recordProvider | Πανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μηχανικών Ηλεκτρονικών Υπολογιστών και Πληροφορικής | el |
heal.type | journalArticle | - |
heal.type.el | Άρθρο Περιοδικού | el |
heal.type.en | Journal article | en |
Αρχεία
Φάκελος/Πακέτο αδειών
1 - 1 of 1
Φόρτωση...
- Ονομα:
- license.txt
- Μέγεθος:
- 1.74 KB
- Μορφότυπο:
- Item-specific license agreed upon to submission
- Περιγραφή: