Recognition Pliability Is Coupled to Structural Heterogeneity: A Calmodulin Intrinsically Disordered Binding Region Complex

dc.contributor.authorNagulapalli, M.en
dc.contributor.authorParigi, G.en
dc.contributor.authorYuan, J.en
dc.contributor.authorGsponer, J.en
dc.contributor.authorDeraos, G.en
dc.contributor.authorBamm, V. V.en
dc.contributor.authorHarauz, G.en
dc.contributor.authorMatsoukas, J.en
dc.contributor.authorde Planque, M. R. R.en
dc.contributor.authorGerothanassis, I. P.en
dc.contributor.authorBabu, M. M.en
dc.contributor.authorLuchinat, C.en
dc.contributor.authorTzakos, A. G.en
dc.date.accessioned2015-11-24T16:46:12Z
dc.date.available2015-11-24T16:46:12Z
dc.identifier.issn0969-2126-
dc.identifier.urihttps://olympias.lib.uoi.gr/jspui/handle/123456789/9044
dc.rightsDefault Licence-
dc.subjectmyelin basic-proteinen
dc.subjectnmr-spectroscopyen
dc.subjectunstructured proteinsen
dc.subjectmolecular recognitionen
dc.subjectconformational spaceen
dc.subjectmultiple-sclerosisen
dc.subjecttarget recognitionen
dc.subjectbackbone dynamicsen
dc.subjectfuzzy complexesen
dc.subjecthuman-diseasesen
dc.titleRecognition Pliability Is Coupled to Structural Heterogeneity: A Calmodulin Intrinsically Disordered Binding Region Complexen
heal.abstractProtein interactions within regulatory networks should adapt in a spatiotemporal-dependent dynamic environment, in order to process and respond to diverse and versatile cellular signals. However, the principles governing recognition pliability in protein complexes are not well understood. We have investigated a region of the intrinsically disordered protein myelin basic protein (MBP145-165) that interacts with calmodulin, but that also promiscuously binds other biomolecules (membranes, modifying enzymes). To characterize this interaction, we implemented an NMR spectroscopic approach that calculates, for each conformation of the complex, the maximum occurrence based on recorded pseudocontact shifts and residual dipolar couplings. We found that the MBP145-165-calmodulin interaction is characterized by structural heterogeneity. Quantitative comparative analysis indicated that distinct conformational landscapes of structural heterogeneity are sampled for different calmodulin-target complexes. Such structural heterogeneity in protein complexes could potentially explain the way that transient and promiscuous protein interactions are optimized and tuned in complex regulatory networks.en
heal.accesscampus-
heal.fullTextAvailabilityTRUE-
heal.identifier.primaryDOI 10.1016/j.str.2012.01.021-
heal.identifier.secondary<Go to ISI>://000301328800018-
heal.identifier.secondaryhttp://ac.els-cdn.com/S0969212612000524/1-s2.0-S0969212612000524-main.pdf?_tid=ce0412e0-3246-11e3-8a07-00000aacb360&acdnat=1381476723_88800a904b5e7530194a3e64e432d338-
heal.journalNameStructureen
heal.journalTypepeer reviewed-
heal.languageen-
heal.publicationDate2012-
heal.publisherElsevieren
heal.recordProviderΠανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Χημείαςel
heal.typejournalArticle-
heal.type.elΆρθρο Περιοδικούel
heal.type.enJournal articleen

Αρχεία

Φάκελος/Πακέτο αδειών

Προβολή: 1 - 1 of 1
Φόρτωση...
Μικρογραφία εικόνας
Ονομα:
license.txt
Μέγεθος:
1.74 KB
Μορφότυπο:
Item-specific license agreed upon to submission
Περιγραφή: